IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-43384-0_3.html
   My bibliography  Save this book chapter

An Introduction to Data Science and Its Applications

In: Data Science and Productivity Analytics

Author

Listed:
  • Alex Rabasa

    (University Miguel Hernandez)

  • Ciara Heavin

    (University College Cork)

Abstract

Data science has become a fundamental discipline, both in the field of basic research and in the resolution of applied problems, where statistics and computer science intersect. Thus, from the perspective of the data itself, machine learning, operation research, methods and algorithms, and data mining techniques are aligned to address new challenges characterised by the complexity, volume and heterogeneous nature of data.

Suggested Citation

  • Alex Rabasa & Ciara Heavin, 2020. "An Introduction to Data Science and Its Applications," International Series in Operations Research & Management Science, in: Vincent Charles & Juan Aparicio & Joe Zhu (ed.), Data Science and Productivity Analytics, chapter 0, pages 57-81, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-43384-0_3
    DOI: 10.1007/978-3-030-43384-0_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David Juárez-Varón & Victoria Tur-Viñes & Alejandro Rabasa-Dolado & Kristina Polotskaya, 2020. "An Adaptive Machine Learning Methodology Applied to Neuromarketing Analysis: Prediction of Consumer Behaviour Regarding the Key Elements of the Packaging Design of an Educational Toy," Social Sciences, MDPI, vol. 9(9), pages 1-23, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-43384-0_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.