IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-3-030-41618-8_4.html
   My bibliography  Save this book chapter

Testing Positive Endogeneity in Inputs in Data Envelopment Analysis

In: Advances in Efficiency and Productivity II

Author

Listed:
  • Juan Aparicio

    (Center of Operations Research (CIO). Miguel Hernandez University of Elche (UMH))

  • Lidia Ortiz

    (Center of Operations Research (CIO). Miguel Hernandez University of Elche (UMH))

  • Daniel Santin

    (Complutense Institute of Economic Analysis)

  • Gabriela Sicilia

    (Autonomous University of Madrid)

Abstract

Data envelopment analysis (DEA) has been widely applied to empirically measure the technical efficiency of a set of schools for benchmarking their performance. However, the endogeneity issue in the production of education, which plays a central role in education economics, has received minor attention in the DEA literature. Under a DEA framework, endogeneity arises when at least one input is correlated with the efficiency term. Cordero et al. (European Journal of Operational Research 244:511–518, 2015) highlighted that DEA performs well under negative and moderate positive endogeneity. However, when an input is highly and positively correlated with the efficiency term, DEA estimates are misleading. The aim of this work is to propose a new test, based on defining a grid of input flexible transformations, for detecting the presence of positive endogeneity in inputs. To show the potential ability of this test, we run a Monte Carlo analysis evaluating the performance of the new approach in finite samples. The results show that this test outperforms alternative statistical procedures for detecting positive high correlations between inputs and the efficiency term. Finally, to illustrate our theoretical findings, we perform an empirical application on the education sector.

Suggested Citation

  • Juan Aparicio & Lidia Ortiz & Daniel Santin & Gabriela Sicilia, 2020. "Testing Positive Endogeneity in Inputs in Data Envelopment Analysis," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor & Joe Zhu (ed.), Advances in Efficiency and Productivity II, pages 53-66, Springer.
  • Handle: RePEc:spr:isochp:978-3-030-41618-8_4
    DOI: 10.1007/978-3-030-41618-8_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-3-030-41618-8_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.