IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4939-9606-3_1.html
   My bibliography  Save this book chapter

Single Resource Revenue Management with Independent Demands

In: Revenue Management and Pricing Analytics

Author

Listed:
  • Guillermo Gallego
  • Huseyin Topaloglu

    (Cornell University)

Abstract

In this chapter, we consider the single resource, independent demand revenue management problem with multiple fare classes. This problem arises in the airline industry where different fares for the same cabin are designed to cater to different market segments. As an example, a low fare may have advance purchase and length of stay restrictions and exclude ancillary services such as advance seat selection, luggage handling, and priority boarding. This low fare may target price-conscious consumers who travel for leisure on restricted budgets. On the other hand, a high fare designed for business consumers may be unrestricted, include ancillary services and be designed to be frequently available for late bookings. If requests for the low fare arrive first, the airline risks selling all of its capacity before seeing requests for the high fare. A key decision in revenue management is how much capacity to reserve for higher fare classes, or equivalently how much capacity to make available for lower fare classes. Throughout the chapter, we will refer to airline applications, but the reader should keep in mind that the models apply more generally.

Suggested Citation

  • Guillermo Gallego & Huseyin Topaloglu, 2019. "Single Resource Revenue Management with Independent Demands," International Series in Operations Research & Management Science, in: Revenue Management and Pricing Analytics, chapter 0, pages 3-46, Springer.
  • Handle: RePEc:spr:isochp:978-1-4939-9606-3_1
    DOI: 10.1007/978-1-4939-9606-3_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kedar Pandurang Joshi & Amol Dhaigude, 2021. "Revenue management for homestay with TODIM-integrated EMSR-b," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(2), pages 134-148, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4939-9606-3_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.