IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-1-4614-5885-2_11.html
   My bibliography  Save this book chapter

Simulation and Real-Time Optimised Relocation for Improving Ambulance Operations

In: Handbook of Healthcare Operations Management

Author

Listed:
  • Andrew James Mason

    (University of Auckland)

Abstract

In this chapter we discuss operations research models and methods for simulating and optimizing ambulance operations. We also discuss our experiences in developing and applying software that implements these techniques. We describe a new simulation-optimization algorithm for base location. We also present a case study detailing how the software we developed was used as part of a major reorganisation of ambulance operations in Copenhagen, Denmark. This chapter also examines the complex problem of real-time ambulance relocation. We review the literature in this area, and describe a new real-time ambulance re-positioning optimisation model and associated software now being used by ambulance operators in several countries to improve their operations.

Suggested Citation

  • Andrew James Mason, 2013. "Simulation and Real-Time Optimised Relocation for Improving Ambulance Operations," International Series in Operations Research & Management Science, in: Brian T. Denton (ed.), Handbook of Healthcare Operations Management, edition 127, chapter 0, pages 289-317, Springer.
  • Handle: RePEc:spr:isochp:978-1-4614-5885-2_11
    DOI: 10.1007/978-1-4614-5885-2_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    2. Kenneth C. Chong & Shane G. Henderson & Mark E. Lewis, 2016. "The Vehicle Mix Decision in Emergency Medical Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 347-360, July.
    3. Matthew S. Maxwell & Eric Cao Ni & Chaoxu Tong & Shane G. Henderson & Huseyin Topaloglu & Susan R. Hunter, 2014. "A Bound on the Performance of an Optimal Ambulance Redeployment Policy," Operations Research, INFORMS, vol. 62(5), pages 1014-1027, October.
    4. Ridler, Samuel & Mason, Andrew J. & Raith, Andrea, 2022. "A simulation and optimisation package for emergency medical services," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1101-1113.
    5. Martin van Buuren & Caroline Jagtenberg & Thije van Barneveld & Rob van der Mei & Sandjai Bhulai, 2018. "Ambulance Dispatch Center Pilots Proactive Relocation Policies to Enhance Effectiveness," Interfaces, INFORMS, vol. 48(3), pages 235-246, June.
    6. Amir Ali Nasrollahzadeh & Amin Khademi & Maria E. Mayorga, 2018. "Real-Time Ambulance Dispatching and Relocation," Manufacturing & Service Operations Management, INFORMS, vol. 20(3), pages 467-480, July.
    7. Amir Rastpour & Armann Ingolfsson & Bora Kolfal, 2020. "Modeling Yellow and Red Alert Durations for Ambulance Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1972-1991, August.
    8. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    9. Wenjuan Sun & Paolo Bocchini & Brian D. Davison, 2020. "Applications of artificial intelligence for disaster management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2631-2689, September.
    10. Mengyu Li & Peter Vanberkel & Alix J. E. Carter, 2019. "A review on ambulance offload delay literature," Health Care Management Science, Springer, vol. 22(4), pages 658-675, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-1-4614-5885-2_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.