IDEAS home Printed from https://ideas.repec.org/h/spr/isochp/978-0-387-22827-3_4.html
   My bibliography  Save this book chapter

A Tutorial on Radiation Oncology and Optimization

In: Tutorials on Emerging Methodologies and Applications in Operations Research

Author

Listed:
  • Allen Holder

    (Trinity University)

  • Bill Salter

    (University of Texas Health Science Center)

Abstract

Designing radiotherapy treatments is a complicated and important task that affects patient care, and modern delivery systems enable a physician more flexibility than can be considered. Consequently, treatment design is increasingly automated by techniques of optimization, and many of the advances in the design process are accomplished by a collaboration among medical physicists, radiation oncologists, and experts in optimization. This tutorial is meant to aid those with a background in optimization in learning about treatment design. Besides discussing several optimization models, we include a clinical perspective so that readers understand the clinical issues that are often ignored in the optimization literature. Moreover, we discuss many new challenges so that new researchers can quickly begin to work on meaningful problems.

Suggested Citation

  • Allen Holder & Bill Salter, 2005. "A Tutorial on Radiation Oncology and Optimization," International Series in Operations Research & Management Science, in: H J. G (ed.), Tutorials on Emerging Methodologies and Applications in Operations Research, chapter 0, pages 4-1-4-45, Springer.
  • Handle: RePEc:spr:isochp:978-0-387-22827-3_4
    DOI: 10.1007/0-387-22827-6_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Freitas, Juliana Campos de & Florentino, Helenice de Oliveira & Benedito, Antone dos Santos & Cantane, Daniela Renata, 2020. "Optimization model applied to radiotherapy planning problem with dose intensity and beam choice," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    2. Luke Mason & Vicky Mak-Hau & Andreas Ernst, 2015. "A parallel optimisation approach for the realisation problem in intensity modulated radiotherapy treatment planning," Computational Optimization and Applications, Springer, vol. 60(2), pages 441-477, March.
    3. Hanif Malekpoor & Nishikant Mishra & Sameer Kumar, 2022. "A novel TOPSIS–CBR goal programming approach to sustainable healthcare treatment," Annals of Operations Research, Springer, vol. 312(2), pages 1403-1425, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:isochp:978-0-387-22827-3_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.