IDEAS home Printed from https://ideas.repec.org/h/spr/conchp/978-3-7908-1721-8_7.html
   My bibliography  Save this book chapter

Agent-Based Models in Ecology: Patterns and Alternative Theories of Adaptive Behaviour

In: Agent-Based Computational Modelling

Author

Listed:
  • Volker Grimm

    (UFZ Centre for Environmental Research Leipzig-Halle)

  • Steven F. Railsback

    (Lang, Railsback & Associates)

Abstract

Summary Ecologists have used agent-based models for a long time, but refer to them as “individual-based models” (IBMs). Common characteristics of IBMs are discrete representation of unique individuals; local interactions; use of adaptive, fitness-seeking behaviour; explicit representation of how individuals and their environment affect each other; and representation of full life cycles. Ecology has contributed to agent-based modelling in general by showing how to use agent-based techniques to explain real systems. Ecologists have used IBMs to understand how dynamics of many real systems arise from traits of individuals and their environment. Two modelling strategies have proven particularly useful. The first strategy is “pattern-oriented modelling” (POM). POM starts with identifying a variety of observed patterns, at different scales and at both individual and system levels, that characterize the system’s dynamics and mechanisms. These patterns, along with the problem being addressed and conceptual models of the system, provide the basis for designing and testing an IBM. A model’s variables and mechanisms are chosen because they are essential for reproducing these characteristic patterns. After an IBM is assembled, alternative versions (different theories for individual behaviour; different parameterizations) can be tested by how well they reproduce the patterns. The second strategy is developing general and reusable theory for the adaptive behaviour of individuals. A “theory” is a model of some specific individual behaviour from which system-level dynamics emerge. Theory can be developed by hypothesizing alternative models for the behaviour, then using the IBM to see which alternative best reproduces a variety of patterns that characterize the system dynamics of interest. Empirical observations are used to develop both theories and the patterns used to test and falsify them. These two strategies are demonstrated with example models of schooling behaviour in fish, spatiotemporal dynamics in forests, and dispersal of brown bears.

Suggested Citation

  • Volker Grimm & Steven F. Railsback, 2006. "Agent-Based Models in Ecology: Patterns and Alternative Theories of Adaptive Behaviour," Contributions to Economics, in: Francesco C. Billari & Thomas Fent & Alexia Prskawetz & Jürgen Scheffran (ed.), Agent-Based Computational Modelling, pages 139-152, Springer.
  • Handle: RePEc:spr:conchp:978-3-7908-1721-8_7
    DOI: 10.1007/3-7908-1721-X_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Focks, Andreas & ter Horst, Mechteld & van den Berg, Erik & Baveco, Hans & van den Brink, Paul J., 2014. "Integrating chemical fate and population-level effect models for pesticides at landscape scale: New options for risk assessment," Ecological Modelling, Elsevier, vol. 280(C), pages 102-116.
    2. Fahse, Lorenz & Papastefanou, Phillip & Otto, Mathias, 2018. "Estimating acute mortality of Lepidoptera caused by the cultivation of insect-resistant Bt maize – The LepiX model," Ecological Modelling, Elsevier, vol. 371(C), pages 50-59.
    3. Brian Sauser & Clifton Baldwin & Saba Pourreza & Wesley Randall & David Nowicki, 2018. "Resilience of small- and medium-sized enterprises as a correlation to community impact: an agent-based modeling approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 79-99, January.
    4. Droz, Michel & Pękalski, Andrzej, 2019. "Tolerance-fecundity trade-off on a homogeneous habitat," Ecological Modelling, Elsevier, vol. 411(C).
    5. Cabral, Reniel B. & Geronimo, Rollan C. & Lim, May T. & Aliño, Porfirio M., 2010. "Effect of variable fishing strategy on fisheries under changing effort and pressure: An agent-based model application," Ecological Modelling, Elsevier, vol. 221(2), pages 362-369.
    6. Eric Innocenti & Claudio Detotto & Corinne Idda & Dawn Cassandra Parker & Dominique Prunetti, 2023. "Spécification conceptuelle MR POTATOHEAD -Property Market Edition du système complexe d'un territoire touristique à deux marchés : application au territoire corse," Post-Print hal-04121402, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:conchp:978-3-7908-1721-8_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.