IDEAS home Printed from https://ideas.repec.org/h/spr/adspcp/978-3-642-01976-0_12.html
   My bibliography  Save this book chapter

Spatial Autocorrelation: A Statistician’s Reflections

In: Perspectives on Spatial Data Analysis

Author

Listed:
  • J. Keith Ord

    (Georgetown University)

Abstract

Improvements in both technology and statistical understanding have led to considerable advances in spatial model building over the past 40 years, yet major challenges remain both in model specification and in ensuring that the underlying statistical assumptions are validated. The basic concept in such modeling efforts is that of spatial dependence, often made operational by some measure of spatial autocorrelation. Such measures depend upon the specification or estimation of a set of weights that describe spatial relationships. We examine how the identification of weights has evolved and briefly describe recent developments. After a brief examination of some of the key assumptions commonly made in spatial modeling, we consider the selection of tests of spatial dependence and their application to irregular sub-regions. We then move on to a consideration of local tests and estimation procedures and identify ways in which local procedures may be useful, particularly for large data sets. We conclude with a brief review of a recently developed method for modeling anisotropic spatial processes.

Suggested Citation

  • J. Keith Ord, 2010. "Spatial Autocorrelation: A Statistician’s Reflections," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 165-180, Springer.
  • Handle: RePEc:spr:adspcp:978-3-642-01976-0_12
    DOI: 10.1007/978-3-642-01976-0_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adspcp:978-3-642-01976-0_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.