IDEAS home Printed from https://ideas.repec.org/h/ito/pchaps/102978.html
   My bibliography  Save this book chapter

Active Flow Control of Wind Turbine Blades

In: Wind Turbines - Design, Control and Applications

Author

Listed:
  • Victor Maldonado

Abstract

Active flow control is a technique to improve the fluid dynamics of an aerodynamic body utilizing an active actuator and energy input. Much progress on the application of active flow control techniques for wind turbine blades has been accomplished in the last decade. The main focus has been on regulating unsteady aerodynamic blade loads and vibration by controlling the flow locally along the blade. The trailing edge flap and synthetic jet actuator have emerged among the most effective actuators for wind turbines. This chapter gives an overview of active flow control techniques, with a specific focus on the application and use of the piezoelectric synthetic jet for vibration reduction of small-scale wind turbine blade models tested in a wind tunnel. Using the techniques presented, the global flow field over the blade was altered such that flow separation was mitigated. Consequently, this resulted in a significant decrease in the vibration of the blade. Particle image velocimetry (PIV) was used to quantify the flow field over the blade. Using synthetic jets, the flow over the blade was either fully or partially reattached, depending on the angle of attack. Current and future research in this field has evolved to understanding and controlling realistic 3D vortex flows typical of actual wind turbines utilizing scaled-down rotor platforms. To this end, the author presents the design and operation of a rotor test tower with custom blades embedded with synthetic jet actuators aimed at investigating multi-scale blade tip vortex interaction and breakdown that may lead to blade vibration and noise reduction.

Suggested Citation

  • Victor Maldonado, 2016. "Active Flow Control of Wind Turbine Blades," Chapters, in: Abdel Ghani Aissaoui & Ahmed Tahour (ed.), Wind Turbines - Design, Control and Applications, IntechOpen.
  • Handle: RePEc:ito:pchaps:102978
    DOI: 10.5772/63480
    as

    Download full text from publisher

    File URL: https://www.intechopen.com/chapters/50849
    Download Restriction: no

    File URL: https://libkey.io/10.5772/63480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Awada & Rafic Younes & Adrian Ilinca, 2021. "Review of Vibration Control Methods for Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-35, May.
    2. Arash E. Samani & Jeroen D. M. De Kooning & Nezmin Kayedpour & Narender Singh & Lieven Vandevelde, 2020. "The Impact of Pitch-To-Stall and Pitch-To-Feather Control on the Structural Loads and the Pitch Mechanism of a Wind Turbine," Energies, MDPI, vol. 13(17), pages 1-21, September.
    3. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).

    More about this item

    Keywords

    active flow control; wind turbines; synthetic jets; load; vibration control;
    All these keywords.

    JEL classification:

    • Q20 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - General
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ito:pchaps:102978. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Slobodan Momcilovic (email available below). General contact details of provider: http://www.intechopen.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.