IDEAS home Printed from https://ideas.repec.org/h/eme/aecozz/s0731-90532019000040a007.html
   My bibliography  Save this book chapter

Robust Estimation of ARMA Models with Near Root Cancellation

In: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A

Author

Listed:
  • Timothy Cogley
  • Richard Startz

Abstract

Standard estimation of ARMA models in which the AR and MA roots nearly cancel, so that individual coefficients are only weakly identified, often produces inferential ranges for individual coefficients that give a spurious appearance of accuracy. We remedy this problem with a model that uses a simple mixture prior. The posterior mixing probability is derived using Bayesian methods, but we show that the method works well in both Bayesian and frequentist setups. In particular, we show that our mixture procedure weights standard results heavily when given data from a well-identified ARMA model (which does not exhibit near root cancellation) and weights heavily an uninformative inferential region when given data from a weakly-identified ARMA model (with near root cancellation). When our procedure is applied to a well-identified process the investigator gets the “usual results,” so there is no important statistical cost to using our procedure. On the other hand, when our procedure is applied to a weakly identified process, the investigator learns that the data tell us little about the parameters – and is thus protected against making spurious inferences. We recommend that mixture models be computed routinely when inference about ARMA coefficients is of interest.

Suggested Citation

  • Timothy Cogley & Richard Startz, 2019. "Robust Estimation of ARMA Models with Near Root Cancellation," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 133-155, Emerald Group Publishing Limited.
  • Handle: RePEc:eme:aecozz:s0731-90532019000040a007
    DOI: 10.1108/S0731-90532019000040A007
    as

    Download full text from publisher

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-90532019000040A007/full/html?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-90532019000040A007/full/epub?utm_source=repec&utm_medium=feed&utm_campaign=repec&title=10.1108/S0731-90532019000040A007
    Download Restriction: no

    File URL: https://www.emerald.com/insight/content/doi/10.1108/S0731-90532019000040A007/full/pdf?utm_source=repec&utm_medium=feed&utm_campaign=repec
    Download Restriction: no

    File URL: https://libkey.io/10.1108/S0731-90532019000040A007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Nelson, Charles R. & Startz, Richard, 2007. "The zero-information-limit condition and spurious inference in weakly identified models," Journal of Econometrics, Elsevier, vol. 138(1), pages 47-62, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Loria, Francesca & Matthes, Christian & Wang, Mu-Chun, 2022. "Economic theories and macroeconomic reality," Journal of Monetary Economics, Elsevier, vol. 126(C), pages 105-117.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    2. Alexei Onatski & Noah Williams, 2003. "Modeling Model Uncertainty," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1087-1122, September.
    3. Jun Ma & Charles R. Nelson, 2008. "Valid Inference for a Class of Models Where Standard Inference Performs Poorly: Including Nonlinear Regression, ARMA, GARCH, and Unobserved Components," Working Papers UWEC-2008-06-R, University of Washington, Department of Economics, revised Sep 2008.
    4. Grace Lee, 2011. "Aggregate shocks decomposition for eight East Asian countries," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 16(2), pages 215-232.
    5. Anatoliy Belaygorod & Michael J. Dueker, 2007. "The price puzzle and indeterminacy in an estimated DSGE model," Working Papers 2006-025, Federal Reserve Bank of St. Louis.
    6. Chadwick, Meltem, 2010. "An Empirical Analysis of Fluctuations in Economic Efficiency in European Countries," MPRA Paper 75304, University Library of Munich, Germany.
    7. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    8. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    9. Myroslav Pidkuyko, 2014. "Dynamics of Consumption and Dividends over the Business Cycle," CERGE-EI Working Papers wp522, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    10. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
    11. Pai, Jeffrey S., 1997. "Bayesian analysis of compound loss distributions," Journal of Econometrics, Elsevier, vol. 79(1), pages 129-146, July.
    12. Tiffin, Richard & Balcombe, Kelvin, 2011. "The determinants of technology adoption by UK farmers using Bayesian model averaging: the cases of organic production and computer usage," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(4), pages 1-20.
    13. Ippei Fujiwara & Koji Takahashi, 2012. "Asian Financial Linkage: Macro‐Finance Dissonance," Pacific Economic Review, Wiley Blackwell, vol. 17(1), pages 136-159, February.
    14. Max Soloschenko & Enzo Weber, 2021. "Trend-Cycle Interactions and the Subprime Crisis: Analysis of US and Canadian Output," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 109-128, November.
    15. Christophe Planas & Alessandro Rossi & Gabriele Fiorentini, 2008. "The marginal likelihood of Structural Time Series Models, with application to the euro area and US NAIRU," Working Paper series 21_08, Rimini Centre for Economic Analysis.
    16. Neville Francis & Michael T. Owyang & Ozge Savascin, 2017. "An endogenously clustered factor approach to international business cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(7), pages 1261-1276, November.
    17. Xu Cheng, 2014. "Uniform Inference in Nonlinear Models with Mixed Identification Strength," PIER Working Paper Archive 14-018, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    18. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
    19. Jaeho Kim & Le Wang, 2019. "Hidden group patterns in democracy developments: Bayesian inference for grouped heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 1016-1028, September.
    20. Lee, Grace H.Y. & Azali, M., 2012. "Is East Asia an optimum currency area?," Economic Modelling, Elsevier, vol. 29(2), pages 87-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:aecozz:s0731-90532019000040a007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.