IDEAS home Printed from https://ideas.repec.org/h/bis/bisifc/50-03.html
   My bibliography  Save this book chapter

Building pathways for policy making with big data

In: The use of big data analytics and artificial intelligence in central banking

Author

Listed:
  • Claudia Buch

Abstract

No abstract is available for this item.

Suggested Citation

  • Claudia Buch, 2019. "Building pathways for policy making with big data," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The use of big data analytics and artificial intelligence in central banking, volume 50, Bank for International Settlements.
  • Handle: RePEc:bis:bisifc:50-03
    as

    Download full text from publisher

    File URL: https://www.bis.org/ifc/publ/ifcb50_03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Irving Fisher Committee, 2017. "Big Data," IFC Bulletins, Bank for International Settlements, number 44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sebastian Doerr & Leonardo Gambacorta & José María Serena Garralda, 2021. "Big data and machine learning in central banking," BIS Working Papers 930, Bank for International Settlements.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnold, René & Hildebrandt, Christian & Taş, Serpil, 2020. "Europäische Datenökonomie: Zwischen Wettbewerb und Regulierung. Endbericht," Study Series, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, number 251537.
    2. Ms. Longmei Zhang & Ms. Sally Chen, 2019. "China’s Digital Economy: Opportunities and Risks," IMF Working Papers 2019/016, International Monetary Fund.
    3. Daniel H. Weinberg & John M. Abowd & Robert F. Belli & Noel Cressie & David C. Folch & Scott H. Holan & Margaret C. Levenstein & Kristen M. Olson & Jerome P. Reiter & Matthew D. Shapiro & Jolene Smyth, 2017. "Effects of a Government-Academic Partnership: Has the NSF-Census Bureau Research Network Helped Improve the U.S. Statistical System?," Working Papers 17-59r, Center for Economic Studies, U.S. Census Bureau.
    4. Xiangjie Kong & Huizhen Jiang & Wei Wang & Teshome Megersa Bekele & Zhenzhen Xu & Meng Wang, 2017. "Exploring dynamic research interest and academic influence for scientific collaborator recommendation," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 369-385, October.
    5. Harwood, Stephen & Eaves, Sally, 2020. "Conceptualising technology, its development and future: The six genres of technology," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    6. Chih-Hung Hsu & Ming-Ge Li & Ting-Yi Zhang & An-Yuan Chang & Shu-Zhen Shangguan & Wan-Ling Liu, 2022. "Deploying Big Data Enablers to Strengthen Supply Chain Resilience to Mitigate Sustainable Risks Based on Integrated HOQ-MCDM Framework," Mathematics, MDPI, vol. 10(8), pages 1-35, April.
    7. Smuha, Nathalie A., 2021. "Beyond the individual: Governing AI's societal harm," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 10(3), pages 1-32.
    8. Yaniv Mordecai, 2019. "Model‐based protocol specification," Systems Engineering, John Wiley & Sons, vol. 22(2), pages 188-210, March.
    9. Rafael J. P. Damaceno & Luciano Rossi & Rogério Mugnaini & Jesús P. Mena-Chalco, 2019. "The Brazilian academic genealogy: evidence of advisor–advisee relationships through quantitative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 303-333, April.
    10. de Streel, Alexandre & Sibony, Anne-Lise, 2017. "Towards Smarter Consumer Protection Rules for Digital Services," 28th European Regional ITS Conference, Passau 2017 169509, International Telecommunications Society (ITS).
    11. Georgios Georgiadis & Geert Poels, 2021. "Enterprise architecture management as a solution for addressing general data protection regulation requirements in a big data context: a systematic mapping study," Information Systems and e-Business Management, Springer, vol. 19(1), pages 313-362, March.
    12. Tractenberg, Rochelle E., 2020. "Concordance of professional ethical practice standards for the domain of Data Science: A white paper," SocArXiv p7rj2, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bis:bisifc:50-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Fessler (email available below). General contact details of provider: https://edirc.repec.org/data/bisssch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.