IDEAS home Printed from https://ideas.repec.org/h/bis/bisifc/44-10.html
   My bibliography  Save this book chapter

Forecasting tourism demand through search queries and machine learning

In: Big Data

Author

Listed:
  • Rendell E. de Kort

Abstract

No abstract is available for this item.

Suggested Citation

  • Rendell E. de Kort, 2017. "Forecasting tourism demand through search queries and machine learning," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Big Data, volume 44, Bank for International Settlements.
  • Handle: RePEc:bis:bisifc:44-10
    as

    Download full text from publisher

    File URL: http://www.bis.org/ifc/publ/ifcb44f.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sax, Christoph & Steiner, Peter, 2013. "Temporal Disaggregation of Time Series," MPRA Paper 53389, University Library of Munich, Germany.
    2. Oscar Claveria & Enric Monte & Salvador Torra, 2013. "“Tourism demand forecasting with different neural networks models”," IREA Working Papers 201321, University of Barcelona, Research Institute of Applied Economics, revised Nov 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta Crispino & Vincenzo Mariani, 2023. "A tool to nowcast tourist overnight stays with payment data and complementary indicators," Questioni di Economia e Finanza (Occasional Papers) 746, Bank of Italy, Economic Research and International Relations Area.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elzbieta Antczak & Ewa Galecka-Burdziak & Robert Pater, 2016. "Efficiency in spatially disaggregated labour market matching," KAE Working Papers 2016-010, Warsaw School of Economics, Collegium of Economic Analysis.
    2. Kyosuke Chikamatsu, Naohisa Hirakata, Yosuke Kido, Kazuki Otaka, 2018. "Nowcasting Japanese GDPs," Bank of Japan Working Paper Series 18-E-18, Bank of Japan.
    3. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    4. İhsan Erdem Kayral & Tuğba Sarı & Nisa Şansel Tandoğan Aktepe, 2023. "Forecasting the Tourist Arrival Volumes and Tourism Income with Combined ANN Architecture in the Post COVID-19 Period: The Case of Turkey," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    5. Vladimir Boyko & Nadezhda Kislyak & Mikhail Nikitin & Oleg Oborin, 2020. "Methods for Estimating the Gross Regional Product Leading Indicator," Russian Journal of Money and Finance, Bank of Russia, vol. 79(3), pages 3-29, September.
    6. Micheli, Martin, 2019. "It is real: On the relation between minimum wages and labor market outcomes for teenagers," Ruhr Economic Papers 829, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Andreas Dibiasi & David Iselin, 2021. "Measuring Knightian uncertainty," Empirical Economics, Springer, vol. 61(4), pages 2113-2141, October.
    8. Naveed, Kashif & Watanabe, Chihiro & Neittaanmäki, Pekka, 2017. "Co-evolution between streaming and live music leads a way to the sustainable growth of music industry – Lessons from the US experiences," Technology in Society, Elsevier, vol. 50(C), pages 1-19.
    9. Sergio González & Edwin Hernández, 2016. "Indirect impacts of oil prices on economic growth in Colombia," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 84, pages 103-141, Enero - J.
    10. Mangani, Andrea, 2021. "When does print media address deforestation? A quantitative analysis of major newspapers from US, UK, and Australia," Forest Policy and Economics, Elsevier, vol. 130(C).
    11. Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.
    12. Tavares Garcia, Francisco & Cross, Jamie L., 2024. "The impact of monetary policy on income inequality: Does inflation targeting matter?," Finance Research Letters, Elsevier, vol. 61(C).
    13. Layna Mosley & Victoria Paniagua & Erik Wibbels, 2020. "Moving markets? Government bond investors and microeconomic policy changes," Economics and Politics, Wiley Blackwell, vol. 32(2), pages 197-249, July.
    14. Michael Zhemkov, 2022. "Assessment of Monthly GDP Growth Using Temporal Disaggregation Methods," Russian Journal of Money and Finance, Bank of Russia, vol. 81(2), pages 79-104, June.
    15. Vera Z. Eichenauer & Ronald Indergand & Isabel Z. Martínez & Christoph Sax, 2022. "Obtaining consistent time series from Google Trends," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 694-705, April.
    16. C. S. Paglia, 2021. "The Dimensional Stability and Durability of Acrylic Resins for the Injection of Cementitious Systems," European Journal of Formal Sciences and Engineering Articles, Revistia Research and Publishing, vol. 4, July -Dec.
    17. Carlos David Ardila-Dueñas & Hernán Rincón-Castro, 2019. "¿Cómo y qué tanto impacta la deuda pública a las tasas de interés de mercado?," Borradores de Economia 1077, Banco de la Republica de Colombia.
    18. Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
    19. Groiss, Martin, 2024. "Equalizing Monetary Policy - the Earnings Heterogeneity Channel in Action," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302346, Verein für Socialpolitik / German Economic Association.
    20. Ronald Indergand & Stefan Leist, 2014. "A Real-Time Data Set for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 150(IV), pages 331-352, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bis:bisifc:44-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Fessler (email available below). General contact details of provider: https://edirc.repec.org/data/bisssch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.