IDEAS home Printed from https://ideas.repec.org/f/pkh353.html
   My authors  Follow this author

Atif Maqbool Khan

Personal Details

First Name:Atif
Middle Name:Maqbool
Last Name:Khan
Suffix:
RePEc Short-ID:pkh353

Affiliation

Wydział Nauk Ekonomicznych i Zarządzania
Uniwersytet Mikolaja Kopernika w Toruniu

Toruń, Poland
http://www.econ.uni.torun.pl/
RePEc:edi:wntorpl (more details at EDIRC)

Research output

as
Jump to: Articles

Articles

  1. Atif Maqbool Khan & Magdalena Osińska, 2022. "Energy Consumption under Circular Economy Conditions in the EU Countries," Energies, MDPI, vol. 15(21), pages 1-17, October.
  2. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.
  3. Atif Maqbool Khan & Jacek Kwiatkowski & Magdalena Osińska & Marcin Błażejowski, 2021. "Factors of Renewable Energy Consumption in the European Countries—The Bayesian Averaging Classical Estimates Approach," Energies, MDPI, vol. 14(22), pages 1-24, November.
  4. Ahmed, Mumtaz & Khan, Atif Maqbool & Bibi, Salma & Zakaria, Muhammad, 2017. "Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 86-97.
  5. Ahmed, Mumtaz & Riaz, Khalid & Maqbool Khan, Atif & Bibi, Salma, 2015. "Energy consumption–economic growth nexus for Pakistan: Taming the untamed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 890-896.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Articles

  1. Atif Maqbool Khan & Magdalena Osińska, 2021. "How to Predict Energy Consumption in BRICS Countries?," Energies, MDPI, vol. 14(10), pages 1-21, May.

    Cited by:

    1. Siyu Zhang & Liusan Wu & Ming Cheng & Dongqing Zhang, 2022. "Prediction of Whole Social Electricity Consumption in Jiangsu Province Based on Metabolic FGM (1, 1) Model," Mathematics, MDPI, vol. 10(11), pages 1-14, May.
    2. Chen Wang & Khalid Eltayeb Elfaki & Xin Zhao & Yuping Shang & Zeeshan Khan, 2022. "International trade and consumption‐based carbon emissions: Does energy efficiency and financial risk ensure sustainable environment?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1451-1461, December.
    3. Lao, Tongfei & Sun, Yanrui, 2022. "Predicting the production and consumption of natural gas in China by using a new grey forecasting method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 295-315.
    4. Muhammad Ishaq Bhatti & Ghulam Ghouse, 2022. "Environmentally Friendly Degradations Technology Breakthrough," Energies, MDPI, vol. 15(18), pages 1-5, September.
    5. Nikolay Tsvetkov & Stanislav Boldyryev & Aleksandr Shilin & Yuriy Krivoshein & Aleksandr Tolstykh, 2022. "Hardware and Software Implementation for Solar Hot Water System in Northern Regions of Russia," Energies, MDPI, vol. 15(4), pages 1-18, February.
    6. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.

  2. Atif Maqbool Khan & Jacek Kwiatkowski & Magdalena Osińska & Marcin Błażejowski, 2021. "Factors of Renewable Energy Consumption in the European Countries—The Bayesian Averaging Classical Estimates Approach," Energies, MDPI, vol. 14(22), pages 1-24, November.

    Cited by:

    1. Osińska, Magdalena & Kyzym, Mykola & Khaustova, Victoriia & Ilyash, Olha & Salashenko, Tetiana, 2022. "Does the Ukrainian electricity market correspond to the european model?," Utilities Policy, Elsevier, vol. 79(C).
    2. Michał Bernard Pietrzak & Marta Kuc-Czarnecka, 2022. "Transformation of Energy Markets: Description, Modeling of Functioning Mechanisms and Determining Development Trends," Energies, MDPI, vol. 15(15), pages 1-6, July.
    3. MURĂRAȘU Ioan Cătălin, 2023. "Analysis of the Volatility of Renewable Sources of Electricity in Romania and the Assessment of Their Capacity to Replace the Conventional Sources," European Journal of Interdisciplinary Studies, Bucharest Economic Academy, issue 01, March.
    4. Zijie Yang & Dong Huang & Yuqing Zhao & Wenqian Wang, 2022. "A Bibliometric Review of Energy Related International Investment Based on an Evolutionary Perspective," Energies, MDPI, vol. 15(9), pages 1-21, May.

  3. Ahmed, Mumtaz & Khan, Atif Maqbool & Bibi, Salma & Zakaria, Muhammad, 2017. "Convergence of per capita CO2 emissions across the globe: Insights via wavelet analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 86-97.

    Cited by:

    1. Delgado, Francisco J. & Freire-González, Jaume & Presno, Maria J., 2022. "Environmental taxation in the European Union: Are there common trends?," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 670-682.
    2. Edy Yusuf Agung Gunanto & Tri Wahyu & Jaka Aminata & Banatul Hayati, 2021. "Convergence CO2 Emission in ASEAN Countries: Augmented Green Solow Model Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(5), pages 572-578.
    3. Qiang Du & Min Wu & Yadan Xu & Xinran Lu & Libiao Bai & Ming Yu, 2018. "Club convergence and spatial distribution dynamics of carbon intensity in China’s construction industry," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(2), pages 519-536, November.
    4. Zhang, Hongwu & Shi, Xunpeng & Cheong, Tsun Se & Wang, Keying, 2020. "Convergence of carbon emissions at the household level in China: A distribution dynamics approach," Energy Economics, Elsevier, vol. 92(C).
    5. Veli Yilanci & Muhammed Sehid Gorus & Sakiru Adebola Solarin, 2022. "Convergence in per capita carbon footprint and ecological footprint for G7 countries: Evidence from panel Fourier threshold unit root test," Energy & Environment, , vol. 33(3), pages 527-545, May.
    6. Yan, Zheming & Du, Keru & Yang, Zhiming & Deng, Min, 2017. "Convergence or divergence? Understanding the global development trend of low-carbon technologies," Energy Policy, Elsevier, vol. 109(C), pages 499-509.
    7. Durmuş Çağrı Yıldırım & Seda Yıldırım & Seyfettin Erdoğan & Işıl Demirtaş & Gualter Couto & Rui Alexandre Castanho, 2021. "Time-Varying Convergences of Environmental Footprint Levels between European Countries," Energies, MDPI, vol. 14(7), pages 1-15, March.
    8. Bhattacharya, Mita & Inekwe, John N. & Sadorsky, Perry, 2020. "Consumption-based and territory-based carbon emissions intensity: Determinants and forecasting using club convergence across countries," Energy Economics, Elsevier, vol. 86(C).
    9. Borowiec, Justyna & Papież, Monika, 2024. "Convergence of CO2 emissions in countries at different stages of development. Do globalisation and environmental policies matter?," Energy Policy, Elsevier, vol. 184(C).
    10. Du, Kerui & Li, Pengzhen & Yan, Zheming, 2019. "Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 297-303.
    11. Rodríguez-Benavides, Domingo & Andrés-Rosales, Roldán & Álvarez-García, José & Bekun, Festus Víctor, 2024. "Convergence of clubs between per capita carbon dioxide emissions from fossil fuels and cement production," Energy Policy, Elsevier, vol. 186(C).
    12. Nazlioglu, Saban & Payne, James E. & Lee, Junsoo & Rayos-Velazquez, Marco & Karul, Cagin, 2021. "Convergence in OPEC carbon dioxide emissions: Evidence from new panel stationarity tests with factors and breaks," Economic Modelling, Elsevier, vol. 100(C).

  4. Ahmed, Mumtaz & Riaz, Khalid & Maqbool Khan, Atif & Bibi, Salma, 2015. "Energy consumption–economic growth nexus for Pakistan: Taming the untamed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 890-896.

    Cited by:

    1. Faisal Mahmood & Maria Saleem, 2016. "An Empirical Analysis of the Impact of Energy Consumption on the Financial Development of the Emerging Economies: A Moderating Role of Oil Prices," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(9), pages 26-33, September.
    2. Kashif Munir & Sana Nadeem, 2022. "Disaggregate Energy Consumption and Economic Growth in Pakistan: A Sectoral Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 296-306.
    3. Iftikhar Ahmad & Muhammad Salman Arif & Izzat Iqbal Cheema & Patrik Thollander & Masroor Ahmed Khan, 2020. "Drivers and Barriers for Efficient Energy Management Practices in Energy-Intensive Industries: A Case-Study of Iron and Steel Sector," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    4. Muhammad Yousaf Raza & Muhammad Tauqir Sultan Shah, 2020. "Analysis of coal-related energy consumption in Pakistan: an alternative energy resource to fuel economic development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6149-6170, October.
    5. Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
    6. Rizwan Fazal & Syed Aziz Ur Rehman & Muhammad Ishaq Bhatti & Atiq Ur Rehman & Fariha Arooj & Umar Hayat, 2021. "A Cross-Sectoral Investigation of the Energy–Environment–Economy Causal Nexus in Pakistan: Policy Suggestions for Improved Energy Management," Energies, MDPI, vol. 14(17), pages 1-22, September.
    7. Alam, Mohammad Jahangir & Ahmed, Mumtaz & Begum, Ismat Ara, 2017. "Nexus between non-renewable energy demand and economic growth in Bangladesh: Application of Maximum Entropy Bootstrap approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 399-406.
    8. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    9. Rath, Badri Narayan & Akram, Vaseem & Bal, Debi Prasad & Mahalik, Mantu Kumar, 2019. "Do fossil fuel and renewable energy consumption affect total factor productivity growth? Evidence from cross-country data with policy insights," Energy Policy, Elsevier, vol. 127(C), pages 186-199.
    10. Aqil Khan & Mumtaz Ahmed & Salma Bibi, 2019. "Financial development and economic growth nexus for Pakistan: a revisit using maximum entropy bootstrap approach," Empirical Economics, Springer, vol. 57(4), pages 1157-1169, October.
    11. Fazal, Rizwan & Rehman, Syed Aziz Ur & Bhatti, M. Ishaq, 2022. "Graph theoretic approach to expose the energy-induced crisis in Pakistan," Energy Policy, Elsevier, vol. 169(C).
    12. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    13. Roubaud, David & Shahbaz, Muhammad, 2018. "Financial Development, Economic Growth, and Electricity Demand: A Sector Analysis of an Emerging Economy," MPRA Paper 87212, University Library of Munich, Germany, revised 06 Jun 2018.
    14. Muhammad Yousaf Raza & Songlin Tang, 2022. "Inter-Fuel Substitution, Technical Change, and Carbon Mitigation Potential in Pakistan: Perspectives of Environmental Analysis," Energies, MDPI, vol. 15(22), pages 1-20, November.
    15. Fazal, Rizwan & Rehman, Syed Aziz Ur & Rehman, Atiq Ur & Bhatti, Muhammad Ishaq & Hussain, Anwar, 2021. "Energy-environment-economy causal nexus in Pakistan: A graph theoretic approach," Energy, Elsevier, vol. 214(C).
    16. Radovanović, Mirjana & Filipović, Sanja & Pavlović, Dejan, 2017. "Energy security measurement – A sustainable approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1020-1032.
    17. Luís Miguel Marques & José Alberto Fuinhas & António Cardoso Marques, 2019. "Are There Spillovers from China on the Global Energy-Growth Nexus? Evidence from Four World Regions," Economies, MDPI, vol. 7(2), pages 1-19, June.
    18. Lin, Boqiang & Raza, Muhammad Yousaf, 2020. "Analysis of energy security indicators and CO2 emissions. A case from a developing economy," Energy, Elsevier, vol. 200(C).
    19. Ur Rehman, Syed Aziz & Cai, Yanpeng & Mirjat, Nayyar Hussain & Walasai, Gordhan Das & Nafees, Mohammad, 2019. "Energy-environment-economy nexus in Pakistan: Lessons from a PAK-TIMES model," Energy Policy, Elsevier, vol. 126(C), pages 200-211.
    20. Nawaz, Kishwar & Lahiani, Amine & Roubaud, David, 2023. "Do natural resources determine energy consumption in Pakistan? The importance of quantile asymmetries," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 200-211.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Atif Maqbool Khan should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.