IDEAS home Printed from https://ideas.repec.org/e/phw11.html
   My authors  Follow this author

In Chang Hwang

Personal Details

First Name:In Chang
Middle Name:
Last Name:Hwang
Suffix:
RePEc Short-ID:phw11
[This author has chosen not to make the email address public]
Terminal Degree:2014 School of Business and Economics; Vrije Universiteit Amsterdam (from RePEc Genealogy)

Affiliation

Seoul Development Institute

Seoul, South Korea
http://www.sdi.re.kr/
RePEc:edi:sdirekr (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Hwang, In Chang & Son, Wonik, 2019. "The benefit of management policy of Seoul on airborne particulate matter: An application of contingent valuation," MPRA Paper 93613, University Library of Munich, Germany.
  2. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.
  3. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
  4. Hwang, In Chang, 2013. "Anthropogenic drivers of carbon emissions: scale and counteracting effects," MPRA Paper 52224, University Library of Munich, Germany.

Articles

  1. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
  2. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
  3. In Chang Hwang, 2017. "A Recursive Method for Solving a Climate–Economy Model: Value Function Iterations with Logarithmic Approximations," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 95-110, June.
  4. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
  5. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. In Chang Hwang, 2016. "Active learning and optimal climate policy," EcoMod2016 9611, EcoMod.

    Cited by:

    1. David Anthoff & Richard S. J. Tol, 2020. "Testing the Dismal Theorem," Working Paper Series 1920, Department of Economics, University of Sussex Business School.
    2. Karunanayake, N. & Aimmanee, P. & Lohitvisate, W. & Makhanov, S.S., 2020. "Particle method for segmentation of breast tumors in ultrasound images," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 170(C), pages 257-284.
    3. Vogt, Christine A. & Andereck, Kathleen L. & Pham, Kim, 2020. "Designing for quality of life and sustainability," Annals of Tourism Research, Elsevier, vol. 83(C).
    4. In Chang Hwang, 2017. "A Recursive Method for Solving a Climate–Economy Model: Value Function Iterations with Logarithmic Approximations," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 95-110, June.
    5. Le, Anh-Tuan & Tran, Thao Phuong & Mishra, Anil V., 2023. "Climate risk and bank stability: International evidence," Journal of Multinational Financial Management, Elsevier, vol. 70.
    6. Pollard, Ciarán P. & Griffin, Christine T. & Andrade Moral, Rafael de & Duffy, Catriona & Chuche, Julien & Gaffney, Michael T. & Fealy, Reamonn M. & Fealy, Rowan, 2020. "phenModel: A temperature-dependent phenology/voltinism model for a herbivorous insect incorporating facultative diapause and budburst," Ecological Modelling, Elsevier, vol. 416(C).
    7. Lee, Dong-Young & Mehran, Muhammad Taqi & Kim, Jonghwan & Kim, Sangcho & Lee, Seung-Bok & Song, Rak-Hyun & Ko, Eun-Yong & Hong, Jong-Eun & Huh, Joo-Youl & Lim, Tak-Hyoung, 2020. "Scaling up syngas production with controllable H2/CO ratio in a highly efficient, compact, and durable solid oxide coelectrolysis cell unit-bundle," Applied Energy, Elsevier, vol. 257(C).
    8. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).

  2. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.

    Cited by:

    1. Paunić, Alida, 2016. "Brazil, Preservation of Forest and Biodiversity," MPRA Paper 71462, University Library of Munich, Germany.

  3. Hwang, In Chang, 2013. "Anthropogenic drivers of carbon emissions: scale and counteracting effects," MPRA Paper 52224, University Library of Munich, Germany.

    Cited by:

    1. Paunić, Alida, 2016. "Brazil, Preservation of Forest and Biodiversity," MPRA Paper 71462, University Library of Munich, Germany.

Articles

  1. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    See citations under working paper version above.
  2. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.

    Cited by:

    1. David Anthoff & Richard S. J. Tol, 2020. "Testing the Dismal Theorem," Working Paper Series 1920, Department of Economics, University of Sussex Business School.
    2. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    3. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Active Learning about Climate Change," Working Paper Series 6513, Department of Economics, University of Sussex Business School.
    4. Ahlvik, Lassi & Iho, Antti, 2018. "Optimal geoengineering experiments," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 148-168.
    5. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    6. Gissela Landa & Paul Malliet & Frédéric Reynés & Aurélien Saussay, 2018. "The state of applied environmental macroeconomics," SciencePo Working papers Main hal-03443474, HAL.
    7. Yongyang Cai, 2020. "The Role of Uncertainty in Controlling Climate Change," Papers 2003.01615, arXiv.org, revised Oct 2020.
    8. In Chang Hwang, 2017. "A Recursive Method for Solving a Climate–Economy Model: Value Function Iterations with Logarithmic Approximations," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 95-110, June.
    9. Ekholm, Tommi, 2018. "Climatic Cost-benefit Analysis Under Uncertainty and Learning on Climate Sensitivity and Damages," Ecological Economics, Elsevier, vol. 154(C), pages 99-106.
    10. Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.

  3. In Chang Hwang, 2017. "A Recursive Method for Solving a Climate–Economy Model: Value Function Iterations with Logarithmic Approximations," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 95-110, June.

    Cited by:

    1. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    2. Aneli Bongers & Cesar Ortiz & Jose L. Torres, 2024. "DISE: A Dynamic Integrated Space Economy Model for Orbital Debris Mitigation Policy Evaluation," Space Economics Working Papers 03-2024, Institute for Space Economics, revised Sep 2024.

  4. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.

    Cited by:

    1. David Anthoff & Richard S. J. Tol, 2020. "Testing the Dismal Theorem," Working Paper Series 1920, Department of Economics, University of Sussex Business School.
    2. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    3. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    4. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    5. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    6. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.

  5. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.

    Cited by:

    1. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    2. David Anthoff & Richard S. J. Tol, 2020. "Testing the Dismal Theorem," Working Paper Series 1920, Department of Economics, University of Sussex Business School.
    3. Chichilnisky, Graciela, 2017. "Climate Policy Without Intertemporal Dictatorship: Chichilnisky Criterion Versus Classical Utilitarianism in Dice," MPRA Paper 88757, University Library of Munich, Germany.
    4. Yi-Ming Wei & Zhi-Fu Mi & Zhiming Huang, 2014. "Climate policy modeling: An online SCI-E and SSCI based literature review," CEEP-BIT Working Papers 58, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Jasper N. Meya & Ulrike Kornek & Kai Lessmann, 2018. "How empirical uncertainties influence the stability of climate coalitions," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(2), pages 175-198, April.
    6. Samuel Jovan Okullo, 2020. "Determining the Social Cost of Carbon: Under Damage and Climate Sensitivity Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(1), pages 79-103, January.
    7. Ikefuji, M. & Laeven, R.J.A. & Magnus, J.R. & Muris, C.H.M., 2010. "Expected Utility and Catastrophic Risk in a Stochastic Economy-Climate Model," Discussion Paper 2010-122, Tilburg University, Center for Economic Research.
    8. Giacomo Marangoni & Jonathan R. Lamontagne & Julianne D. Quinn & Patrick M. Reed & Klaus Keller, 2021. "Adaptive mitigation strategies hedge against extreme climate futures," Climatic Change, Springer, vol. 166(3), pages 1-17, June.
    9. Masako Ikefuji & Jan R. Magnus, 2020. "The perception of climate sensitivity: Revealing priors from posteriors," Tinbergen Institute Discussion Papers 20-046/III, Tinbergen Institute.
    10. Tomas Havranek & Zuzana Irsova & Karel Janda & David Zilberman, 2015. "Selective reporting and the social cost of carbon," CAMA Working Papers 2015-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    12. Davidson, Marc D., 2014. "Zero discounting can compensate future generations for climate damage," Ecological Economics, Elsevier, vol. 105(C), pages 40-47.
    13. Edilio Valentini & Paolo Vitale, 2014. "Optimal Climate Policy for a Pessimistic Social Planner," Working Papers 2014.33, Fondazione Eni Enrico Mattei.
    14. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Tail-effect and the Role of Greenhouse Gas Emissions Control," Working Paper Series 6613, Department of Economics, University of Sussex Business School.
    15. Masako Ikefuji & Jan Magnus & Andrey Vasnev, 2023. "The role of data and priors in estimating climate sensitivity," ISER Discussion Paper 1217, Institute of Social and Economic Research, Osaka University.
    16. In Chang Hwang & Richard S. J. Tol & Marjan W. Hofkes, 2019. "Active Learning and Optimal Climate Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1237-1264, August.
    17. Gissela Landa & Paul Malliet & Frédéric Reynés & Aurélien Saussay, 2018. "The state of applied environmental macroeconomics," SciencePo Working papers Main hal-03443474, HAL.
    18. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stephane, 2018. "When Starting with the Most Expensive Option Makes Sense: Optimal Timing, Cost and Sectoral Allocation of Abatement Investment," IDB Publications (Working Papers) 8809, Inter-American Development Bank.
    19. Hwang, In Chang & Reynès, Frédéric & Tol, Richard S.J., 2017. "The effect of learning on climate policy under fat-tailed risk," Resource and Energy Economics, Elsevier, vol. 48(C), pages 1-18.
    20. Delton B. Chen & Joel van der Beek & Jonathan Cloud, 2017. "Climate mitigation policy as a system solution: addressing the risk cost of carbon," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 7(3), pages 233-274, July.
    21. Hwang, In Chang, 2014. "Fat-tailed uncertainty and the learning-effect," MPRA Paper 53671, University Library of Munich, Germany.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 4 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ENE: Energy Economics (4) 2013-12-20 2014-04-11 2017-04-23 2019-05-06
  2. NEP-ENV: Environmental Economics (4) 2013-12-20 2014-04-11 2017-04-23 2019-05-06
  3. NEP-DCM: Discrete Choice Models (1) 2019-05-06
  4. NEP-GER: German Papers (1) 2014-04-11

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, In Chang Hwang should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.