IDEAS home Printed from https://ideas.repec.org/b/spr/adspsc/978-3-662-46008-5.html
   My bibliography  Save this book

Sampling Spatial Units for Agricultural Surveys

Author

Listed:
  • Roberto Benedetti

    ("G. d'Annunzio" University of Chieti-Pescara)

  • Federica Piersimoni

    (Italian National Statistical Institute, ISTAT)

  • Paolo Postiglione

    ("G. d'Annunzio" University of Chieti-Pescara)

Abstract

No abstract is available for this item.

Individual chapters are listed in the "Chapters" tab

Suggested Citation

  • Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2015. "Sampling Spatial Units for Agricultural Surveys," Advances in Spatial Science, Springer, edition 127, number 978-3-662-46008-5.
  • Handle: RePEc:spr:adspsc:978-3-662-46008-5
    DOI: 10.1007/978-3-662-46008-5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chauvet, Guillaume & Ruiz-Gazen, Anne, 2017. "A comparison of pivotal sampling and unequal probability sampling with replacement," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 1-5.
    2. Linda Altieri & Daniela Cocchi, 2021. "Spatial Sampling for Non‐compact Patterns," International Statistical Review, International Statistical Institute, vol. 89(3), pages 532-549, December.
    3. Zhonglei Wang & Zhengyuan Zhu, 2019. "Spatiotemporal Balanced Sampling Design for Longitudinal Area Surveys," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 245-263, June.
    4. Guillaume Chauvet & Ronan Le Gleut, 2021. "Inference under pivotal sampling: Properties, variance estimation, and application to tesselation for spatial sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 108-131, March.
    5. Wilmer Prentius, 2024. "Locally correlated Poisson sampling," Environmetrics, John Wiley & Sons, Ltd., vol. 35(2), March.
    6. Sang Hailin & Lopiano Kenneth K. & Abreu Denise A. & Lamas Andrea C. & Arroway Pam & Young Linda J., 2017. "Adjusting for Misclassification: A Three-Phase Sampling Approach," Journal of Official Statistics, Sciendo, vol. 33(1), pages 207-222, March.
    7. Xin Zhao & Anton Grafström, 2020. "A sample coordination method to monitor totals of environmental variables," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    8. Wilmer Prentius & Xin Zhao & Anton Grafström, 2021. "Combining Environmental Area Frame Surveys of a Finite Population," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 250-266, June.
    9. Letícia Ellen Dal Canton & Luciana Pagliosa Carvalho Guedes & Miguel Angel Uribe-Opazo, 2021. "Reduction of Sample Size in the Soil Physical-Chemical Attributes Using the Multivariate Effective Sample Size," Journal of Agricultural Studies, Macrothink Institute, vol. 9(1), pages 357-376, June.
    10. Roberto Benedetti & Federica Piersimoni & Paolo Postiglione, 2017. "Spatially Balanced Sampling: A Review and A Reappraisal," International Statistical Review, International Statistical Institute, vol. 85(3), pages 439-454, December.
    11. C. Ferraz & F. Mecatti & J. Torres, 2023. "Dual frame design in agricultural surveys: reviewing roots and methodological perspectives," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(2), pages 593-617, June.
    12. R. Benedetti & F. Piersimoni & P. Postiglione, 2017. "Alternative and complementary approaches to spatially balanced samples," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 249-264, December.
    13. Giuseppe Espa & Diego Giuliani & Flavio Santi & Emanuele Taufer, 2017. "Model-based variance estimation in two-dimensional systematic sampling," METRON, Springer;Sapienza Università di Roma, vol. 75(3), pages 265-275, December.

    Book Chapters

    The following chapters of this book are listed in IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:adspsc:978-3-662-46008-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.