IDEAS home Printed from https://ideas.repec.org/b/oxp/obooks/9780195109580.html
   My bibliography  Save this book

A Casebook for Spatial Statistical Data Analysis: A Compilation of Different Thematic Data Sets

Author

Listed:
  • Griffith, Daniel A.

    (Syracuse University)

  • Layne, Larry J.

    (Universidad Central de Venezuela)

Abstract

This volume compiles geostatistical and spatial autoregressive data analyses involving georeferenced socioeconomic, natural resources, agricultural, pollution, and epidemiological variables. Benchmark analyses are followed by analyses of readily available data sets, emphasizing parallels between geostatistical and spatial autoregressive findings. Both SAS and SPSS code are presented for implementation purposes. This informative casebook will serve geographers, regional scientists, applied spatial statisticians, and spatial scientists from across disciplines.

Suggested Citation

  • Griffith, Daniel A. & Layne, Larry J., 1999. "A Casebook for Spatial Statistical Data Analysis: A Compilation of Different Thematic Data Sets," OUP Catalogue, Oxford University Press, number 9780195109580.
  • Handle: RePEc:oxp:obooks:9780195109580
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    2. Clapp, John M. & Wang, Yazhen, 2006. "Defining neighborhood boundaries: Are census tracts obsolete?," Journal of Urban Economics, Elsevier, vol. 59(2), pages 259-284, March.
    3. Antonio Páez & Takashi Uchida & Kazuaki Miyamoto, 2002. "A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 1. Location-Specific Kernel Bandwidths and a Test for Locational Heterogeneity," Environment and Planning A, , vol. 34(4), pages 733-754, April.
    4. Eboli, Laura & Forciniti, Carmen & Mazzulla, Gabriella, 2018. "Spatial variation of the perceived transit service quality at rail stations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PA), pages 67-83.
    5. Morito Tsutsumi & Daisuke Murakami, 2014. "New Spatial Econometrics–Based Areal Interpolation Method," International Regional Science Review, , vol. 37(3), pages 273-297, July.
    6. Sang-Il Lee, 2004. "A Generalized Significance Testing Method for Global Measures of Spatial Association: An Extension of the Mantel Test," Environment and Planning A, , vol. 36(9), pages 1687-1703, September.
    7. Antonio Paez & Darren Scott & Dimitris Potoglou & Pavlos Kanaroglou & K. Bruce Newbold, 2007. "Elderly Mobility: Demographic and Spatial Analysis of Trip Making in the Hamilton CMA, Canada," Urban Studies, Urban Studies Journal Limited, vol. 44(1), pages 123-146, January.
    8. Marcia Castro, 2007. "Spatial Demography: An Opportunity to Improve Policy Making at Diverse Decision Levels," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(5), pages 477-509, December.
    9. Hiro Izushi, 2008. "What Does Endogenous Growth Theory Tell about Regional Economies? Empirics of R&D Worker-based Productivity Growth," Regional Studies, Taylor & Francis Journals, vol. 42(7), pages 947-960.
    10. Reda, Abel Kebede & Tavasszy, Lori & Gebresenbet, Girma & Ljungberg, David, 2023. "Modelling the effect of spatial determinants on freight (trip) attraction: A spatially autoregressive geographically weighted regression approach," Research in Transportation Economics, Elsevier, vol. 99(C).
    11. Moniruzzaman, Md & Páez, Antonio, 2012. "Accessibility to transit, by transit, and mode share: application of a logistic model with spatial filters," Journal of Transport Geography, Elsevier, vol. 24(C), pages 198-205.
    12. Mary Margaret Ford & Linda D Highfield, 2016. "Exploring the Spatial Association between Social Deprivation and Cardiovascular Disease Mortality at the Neighborhood Level," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-17, January.
    13. Páez, Antonio, 2013. "Mapping travelers’ attitudes: does space matter?," Journal of Transport Geography, Elsevier, vol. 26(C), pages 117-125.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxp:obooks:9780195109580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Economics Book Marketing (email available below). General contact details of provider: http://www.oup.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.