IDEAS home Printed from https://ideas.repec.org/b/cup/cbooks/9781107436770.html
   My bibliography  Save this book

Introduction to Bayesian Econometrics

Author

Listed:
  • Greenberg,Edward

Abstract

This textbook explains the basic ideas of subjective probability and shows how subjective probabilities must obey the usual rules of probability to ensure coherency. It defines the likelihood function, prior distributions and posterior distributions. It explains how posterior distributions are the basis for inference and explores their basic properties. Various methods of specifying prior distributions are considered, with special emphasis on subject-matter considerations and exchange ability. The regression model is examined to show how analytical methods may fail in the derivation of marginal posterior distributions. The remainder of the book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics and other applied fields. New to the second edition is a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH and stochastic volatility models. The new edition also emphasizes the R programming language.

Suggested Citation

  • Greenberg,Edward, 2014. "Introduction to Bayesian Econometrics," Cambridge Books, Cambridge University Press, number 9781107436770, January.
  • Handle: RePEc:cup:cbooks:9781107436770
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:wrk:wrkemf:38 is not listed on IDEAS
    2. Aiste Ruseckaite & Dennis Fok & Peter Goos, 2016. "Flexible Mixture-Amount Models for Business and Industry using Gaussian Processes," Tinbergen Institute Discussion Papers 16-075/III, Tinbergen Institute.
    3. Tobias S. Blattner & Michael A. S. Joyce, 2020. "The Euro Area Bond Free Float and the Implications for QE," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 52(6), pages 1361-1395, September.
    4. Mark J. Jensen & John M. Maheu, 2018. "Risk, Return and Volatility Feedback: A Bayesian Nonparametric Analysis," JRFM, MDPI, vol. 11(3), pages 1-29, September.
    5. Ana Beatriz Galvão & Michael Owyang, 2022. "Forecasting low‐frequency macroeconomic events with high‐frequency data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1314-1333, November.
    6. Hiroaki Chigira & Tsunemasa Shiba, 2012. "Dirichlet Prior for Estimating Unknown Regression Error Heteroscedasticity," Global COE Hi-Stat Discussion Paper Series gd12-248, Institute of Economic Research, Hitotsubashi University.
    7. Babajide Abiola Ayopo & Lawal Adedoyin Isola & Somoye Russel Olukayode, 2016. "Stock Market Response to Economic Growth and Interest Rate Volatility: Evidence from Nigeria," International Journal of Economics and Financial Issues, Econjournals, vol. 6(1), pages 354-360.
    8. Michael P. Clements & Ana Beatriz Galvão, 2023. "Density forecasting with Bayesian Vector Autoregressive models under macroeconomic data uncertainty," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 164-185, March.
    9. Marius Galabe Sampid & Haslifah M Hasim & Hongsheng Dai, 2018. "Refining value-at-risk estimates using a Bayesian Markov-switching GJR-GARCH copula-EVT model," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-33, June.
    10. repec:wrk:wrkemf:36 is not listed on IDEAS
    11. Fabian Krüger & Sebastian Lerch & Thordis Thorarinsdottir & Tilmann Gneiting, 2021. "Predictive Inference Based on Markov Chain Monte Carlo Output," International Statistical Review, International Statistical Institute, vol. 89(2), pages 274-301, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:cbooks:9781107436770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Austin (email available below). General contact details of provider: https://www.cambridge.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.