IDEAS home Printed from https://ideas.repec.org/a/zna/indecs/v4y2006i1p51-62.html
   My bibliography  Save this article

Visualization of Complex Networks Based on Dyadic Curvelet Transform

Author

Listed:
  • Marjan Sedighi Anaraki

    (Department of Computational Intelligence & Systems Science, Tokyo Institute of Technology)

  • Fangyan Dong

    (Department of Computational Intelligence & Systems Science, Tokyo Institute of Technology)

  • Hajime Nobuhara

    (Department of Intelligent Interaction Technologies, Graduate School of Systems and Information Engineering, University of Tsukuba)

  • Kaoru Hirota

    (Department of Computational Intelligence & Systems Science, Tokyo Institute of Technology)

Abstract

A visualization method is proposed for understanding the structure of complex networks based on an extended Curvelet transform named Dyadic Curvelet Transform (DClet). The proposed visualization method comes to answer specific questions about structures of complex networks by mapping data into orthogonal localized events with a directional component via the Cartesian sampling sets of detail coefficients. It behaves in the same matter as human visual system, seeing in terms of segments and distinguishing them by scale and orientation. Compressing the network is another fact. The performance of the proposed method is evaluated by two different networks with structural properties of small world networks with N = 16 vertices, and a globally coupled network with size N = 1024 and 523 776 edges. As the most large scale real networks are not fully connected, it is tested on the telecommunication network of Iran as a real extremely complex network with 92 intercity switching vertices, 706 350 E1 traffic channels and 315 525 transmission channels. It is shown that the proposed method performs as a simulation tool for successfully design of network and establishing the necessary group sizes. It can clue the network designer in on all structural properties that network has.

Suggested Citation

  • Marjan Sedighi Anaraki & Fangyan Dong & Hajime Nobuhara & Kaoru Hirota, 2006. "Visualization of Complex Networks Based on Dyadic Curvelet Transform," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 4(1), pages 51-62.
  • Handle: RePEc:zna:indecs:v:4:y:2006:i:1:p:51-62
    as

    Download full text from publisher

    File URL: http://indecs.eu/2006/indecs2006-pp51-62.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Hai-Feng & Wu, Rui-Xin & Fu, Xin-Chu, 2006. "The emergence of chaos in complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 28(2), pages 472-479.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Jianquan & Ho, Daniel W.C., 2008. "Local and global synchronization in general complex dynamical networks with delay coupling," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1497-1510.
    2. Yuan, Wu-Jie & Luo, Xiao-Shu & Jiang, Pin-Qun & Wang, Bing-Hong & Fang, Jin-Qing, 2008. "Transition to chaos in small-world dynamical network," Chaos, Solitons & Fractals, Elsevier, vol. 37(3), pages 799-806.
    3. Guan, Zhi-Hong & Zhang, Hao, 2008. "Stabilization of complex network with hybrid impulsive and switching control," Chaos, Solitons & Fractals, Elsevier, vol. 37(5), pages 1372-1382.
    4. Posadas-Castillo, C. & Cruz-Hernández, C. & López-Gutiérrez, R.M., 2009. "Experimental realization of synchronization in complex networks with Chua’s circuits like nodes," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1963-1975.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zna:indecs:v:4:y:2006:i:1:p:51-62. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Josip Stepanic (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.