IDEAS home Printed from https://ideas.repec.org/a/zib/zbmsmk/v6y2022i2p41-51.html
   My bibliography  Save this article

Modeling The Volatility For Some Selected Beverages Stock Returns In Nigeria (2012-2021): A Garch Model Approach

Author

Listed:
  • Samuel Olorunfemi Adams

    (Department of Statistics, University of Abuja, Abuja – Nigeria)

  • Tanimu Mohammed

    (Department of Statistics, University of Abuja, Abuja – Nigeria)

  • Samuel Olorunfemi Adams

    (Department of Statistics, University of Abuja, Abuja – Nigeria)

Abstract

The volatility of equity returns for two beverages traded on the Nigerian stock exchange is the subject of this study. The ARCH effect test demonstrated that the two beverages disprove the claim that there is no ARCH effect. According to the preliminary analysis, both beverages were volatile. CGARCH and EGARCH were chosen as the best volatility models for Guinness Nigeria Plc returns and Nigeria Breweries returns, respectively, based on model selection criteria. The EGARCH model, on the other hand, rejected the idea that Guinness Nigeria Plc’s equity returns respond equally to negative and positive shocks of similar magnitude. This study’s findings suggest that the government should be cautious about how it manages inflation and foreign direct investment because they affect the rising stock price. Financial stability will likely be a more direct and explicit part of the macroeconomic responsibilities of central banks in the coming years.

Suggested Citation

  • Samuel Olorunfemi Adams & Tanimu Mohammed & Samuel Olorunfemi Adams, 2022. "Modeling The Volatility For Some Selected Beverages Stock Returns In Nigeria (2012-2021): A Garch Model Approach," Matrix Science Mathematic (MSMK), Zibeline International Publishing, vol. 6(2), pages 41-51, November.
  • Handle: RePEc:zib:zbmsmk:v:6:y:2022:i:2:p:41-51
    DOI: 10.26480/msmk.02.2022.41.51
    as

    Download full text from publisher

    File URL: https://matrixsmathematic.com/archives/2msmk2022/2msmk2022-41-51.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/msmk.02.2022.41.51?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Robert Engle, 2004. "Risk and Volatility: Econometric Models and Financial Practice," American Economic Review, American Economic Association, vol. 94(3), pages 405-420, June.
    3. Basher, Syed A. & Sadorsky, Perry, 2006. "Oil price risk and emerging stock markets," Global Finance Journal, Elsevier, vol. 17(2), pages 224-251, December.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. G. Ogum & F. Beer & G. Nouyrigat, 2005. "Emerging Equity market Volatility: An empirical Investigation of Emergent market: Kenya Nigeria," Post-Print halshs-00103119, HAL.
    6. Hsieh, David A, 1991. "Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    7. David, Alexander, 1997. "Fluctuating Confidence in Stock Markets: Implications for Returns and Volatility," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 427-462, December.
    8. Hammoudeh, Shawkat & Li, Huimin, 2008. "Sudden changes in volatility in emerging markets: The case of Gulf Arab stock markets," International Review of Financial Analysis, Elsevier, vol. 17(1), pages 47-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naseem Al Rahahleh & Robert Kao, 2018. "Forecasting Volatility: Evidence from the Saudi Stock Market," JRFM, MDPI, vol. 11(4), pages 1-18, November.
    2. Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
    3. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    4. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    5. Arthur M. Berd & Robert F. Engle & Artem Voronov, 2010. "The Underlying Dynamics of Credit Correlations," Papers 1001.0786, arXiv.org.
    6. Marcin Chlebus, 2016. "Can Lognormal, Weibull or Gamma Distributions Improve the EWS-GARCH Value-at-Risk Forecasts?," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Magdalena Osińska (ed.), Statistical Review, vol. 63, 2016, 3, edition 1, volume 63, chapter 4, pages 329-350, University of Lodz.
    7. Appiah-Kusi, Joe & Menyah, Kojo, 2003. "Return predictability in African stock markets," Review of Financial Economics, Elsevier, vol. 12(3), pages 247-270.
    8. Asteriou, Dimitrios & Bashmakova, Yuliya, 2013. "Assessing the impact of oil returns on emerging stock markets: A panel data approach for ten Central and Eastern European Countries," Energy Economics, Elsevier, vol. 38(C), pages 204-211.
    9. Aloui, Chaker & Jammazi, Rania, 2015. "Dependence and risk assessment for oil prices and exchange rate portfolios: A wavelet based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 62-86.
    10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    11. Ntebogang Dinah Moroke, 2015. "An Optimal Generalized Autoregressive Conditional Heteroscedasticity Model for Forecasting the South African Inflation Volatility," Journal of Economics and Behavioral Studies, AMH International, vol. 7(4), pages 134-149.
    12. Chiara Pederzoli, 2006. "Stochastic Volatility and GARCH: a Comparison Based on UK Stock Data," The European Journal of Finance, Taylor & Francis Journals, vol. 12(1), pages 41-59.
    13. Hasanov, Akram Shavkatovich & Poon, Wai Ching & Al-Freedi, Ajab & Heng, Zin Yau, 2018. "Forecasting volatility in the biofuel feedstock markets in the presence of structural breaks: A comparison of alternative distribution functions," Energy Economics, Elsevier, vol. 70(C), pages 307-333.
    14. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    15. Degiannakis, Stavros & Xekalaki, Evdokia, 2007. "Assessing the Performance of a Prediction Error Criterion Model Selection Algorithm in the Context of ARCH Models," MPRA Paper 96324, University Library of Munich, Germany.
    16. Veronesi, Pietro, 2004. "The Peso problem hypothesis and stock market returns," Journal of Economic Dynamics and Control, Elsevier, vol. 28(4), pages 707-725, January.
    17. Dahiru A. Balaa & Taro Takimotob, 2017. "Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 17(1), pages 25-48, March.
    18. Feng, Yuanhua & Härdle, Wolfgang Karl, 2020. "A data-driven P-spline smoother and the P-Spline-GARCH models," IRTG 1792 Discussion Papers 2020-016, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    19. Schindler, Felix, 2009. "Volatilitätseffekte am US-amerikanischen Häusermarkt," ZEW Discussion Papers 09-048, ZEW - Leibniz Centre for European Economic Research.
    20. Aliyu, Shehu Usman Rano, 2020. "What have we learnt from modelling stock returns in Nigeria: Higgledy-piggledy?," MPRA Paper 110382, University Library of Munich, Germany, revised 06 Jun 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbmsmk:v:6:y:2022:i:2:p:41-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://matrixsmathematic.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.