IDEAS home Printed from https://ideas.repec.org/a/zib/jclnws/v5y2021i2p39-46.html
   My bibliography  Save this article

Assessment Of Rainfall Variability For Sustainable Agriculture In Owerri, Imo State, Nigeria

Author

Listed:
  • Onwuadiochi, I. C

    (Department of Geography and Meteorology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.)

  • Onyeanusi, C. C

    (Department of Geography and Meteorology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria.)

  • Mage, J. O.

    (Department of Geography, Benue State University, Makurdi, Benue State, Nigeria.)

Abstract

Rainfall variability and agricultural sustainability have been of major concern to the Climatologists, Agriculturists and farmers in general. The net potential effect of severe changes in rainfall pattern is the disruption in crop production leading to food insecurity, joblessness and poverty. As a major concern to increase food production, this study seeks to assess the rainfall variability in Owerri City with a view to enhancing agricultural sustainability. The study used rainfall data (1981-2018) from Nigerian Meteorological Agency. Correlation and Regression techniques were employed for analysis. The result shows that there is no significant relationship between the number of rainy days and annual amount of rainfall. Also, there is no significant relationship between the length of rainy season and number of rainy days in the study area. The study also shows four years forecast of rainfall in the study area. The result shows an evidence and upsurge of low agricultural produce, food insecurity and hunger in the nearest future, and therefore recommends some sustainable agricultural practices that can boost yield, good health and healthy environment and reduce the effect of climate change.

Suggested Citation

  • Onwuadiochi, I. C & Onyeanusi, C. C & Mage, J. O., 2021. "Assessment Of Rainfall Variability For Sustainable Agriculture In Owerri, Imo State, Nigeria," Journal Clean WAS (JCleanWAS), Zibeline International Publishing, vol. 5(2), pages 39-46, July.
  • Handle: RePEc:zib:jclnws:v:5:y:2021:i:2:p:39-46
    DOI: 10.26480/jcleanwas.02.2021.39.46
    as

    Download full text from publisher

    File URL: https://jcleanwas.com/download/1459/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jcleanwas.02.2021.39.46?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sarah Velten & Julia Leventon & Nicolas Jager & Jens Newig, 2015. "What Is Sustainable Agriculture? A Systematic Review," Sustainability, MDPI, vol. 7(6), pages 1-33, June.
    2. Philip Antwi-Agyei & Andrew Dougill & Evan Fraser & Lindsay Stringer, 2013. "Characterising the nature of household vulnerability to climate variability: empirical evidence from two regions of Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(4), pages 903-926, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Portia Adade Williams & Olivier Crespo & Mumuni Abu, 2020. "Assessing vulnerability of horticultural smallholders’ to climate variability in Ghana: applying the livelihood vulnerability approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(3), pages 2321-2342, March.
    2. Agnieszka Wojewódzka-Wiewiórska & Anna Kłoczko-Gajewska & Piotr Sulewski, 2019. "Between the Social and Economic Dimensions of Sustainability in Rural Areas—In Search of Farmers’ Quality of Life," Sustainability, MDPI, vol. 12(1), pages 1-26, December.
    3. Phélinas, Pascale & Choumert, Johanna, 2017. "Is GM Soybean Cultivation in Argentina Sustainable?," World Development, Elsevier, vol. 99(C), pages 452-462.
    4. Muhammed Yasin Taskesenlioglu & Sezai Ercisli & Muhammed Kupe & Nazan Ercisli, 2022. "History of Grape in Anatolia and Historical Sustainable Grape Production in Erzincan Agroecological Conditions in Turkey," Sustainability, MDPI, vol. 14(3), pages 1-16, January.
    5. Matteo Zavalloni & Meri Raggi & Davide Viaggi, 2016. "Assessing Collective Measures in Rural Policy: The Effect of Minimum Participation Rules on the Distribution of Benefits from Irrigation Infrastructure," Sustainability, MDPI, vol. 9(1), pages 1-19, December.
    6. Chipo Mudavanhu & Tawanda Manyangadze & Emmanuel Mavhura & Ezra Pedzisai & Desmond Manatsa, 2020. "Rural households’ vulnerability and risk of flooding in Mbire District, Zimbabwe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3591-3608, September.
    7. Cecilia M. V. B. Almeida & Biagio F. Giannetti & Feni Agostinho & Gengyuan Liu & Zhifeng Yang, 2021. "What Are the Stimuli to Change to a Sustainable Post-COVID-19 Society?," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    8. Emilia Schmitt & Daniel Keech & Damian Maye & Dominique Barjolle & James Kirwan, 2016. "Comparing the Sustainability of Local and Global Food Chains: A Case Study of Cheese Products in Switzerland and the UK," Sustainability, MDPI, vol. 8(5), pages 1-20, April.
    9. Monika Hejna & Elisabetta Onelli & Alessandra Moscatelli & Maurizio Bellotto & Cinzia Cristiani & Nadia Stroppa & Luciana Rossi, 2021. "Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    10. Jacqueline Loos & Henrik Von Wehrden, 2018. "Beyond Biodiversity Conservation: Land Sharing Constitutes Sustainable Agriculture in European Cultural Landscapes," Sustainability, MDPI, vol. 10(5), pages 1-11, May.
    11. Thanh Ngo & Hai‐Dang Nguyen & Huong Ho & Vo‐Kien Nguyen & Thuy T. T. Dao & Hai T. H. Nguyen, 2021. "Assessing the important factors of sustainable agriculture development: An Indicateurs de Durabilité des Exploitations Agricoles‐Analytic Hierarchy Process study in the northern region of Vietnam," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 327-338, March.
    12. Balikisu Osman, 2023. "Climate and Food Insecurity Risks: Identifying Exposure and Vulnerabilities in the Post-Food Production System of Northern Ghana," Land, MDPI, vol. 12(11), pages 1-19, November.
    13. Stan Selbonne & Loïc Guindé & François Causeret & Pierre Chopin & Jorge Sierra & Régis Tournebize & Jean-Marc Blazy, 2023. "How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    14. Céline Nauges & Sarah Ann Wheeler & Kelly S. Fielding, 2021. "The relationship between country and individual household wealth and climate change concern: the mediating role of control," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16481-16503, November.
    15. Lin Wang & Guofang Hu & Yaojie Yue & Xinyue Ye & Min Li & Jintao Zhao & Jinhong Wan, 2016. "GIS-Based Risk Assessment of Hail Disasters Affecting Cotton and Its Spatiotemporal Evolution in China," Sustainability, MDPI, vol. 8(3), pages 1-20, February.
    16. Mutaz Alshafeey & Asefeh Asemi & Omar Rashdan, 2018. "Industrial revolution 4.0, renewable energy: A content analysis," Proceedings of FIKUSZ 2018, in: Proceedings of FIKUSZ '18, pages 23-31, Óbuda University, Keleti Faculty of Business and Management.
    17. Ralph De Witte & Dirk Janssen & Samir Sayadi Gmada & Carmen García-García, 2023. "Best Practices for Training in Sustainable Greenhouse Horticulture," Sustainability, MDPI, vol. 15(7), pages 1-26, March.
    18. Norman Siebrecht, 2020. "Sustainable Agriculture and Its Implementation Gap—Overcoming Obstacles to Implementation," Sustainability, MDPI, vol. 12(9), pages 1-27, May.
    19. Paul Hong & Balasudarsun N. L. & Vivek N. & Sathish M., 2022. "Sustainable Agricultural Business Model: Case Studies of Innovative Indian Farmers," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    20. Rachel A. Bahn & Abed Al Kareem Yehya & Rami Zurayk, 2021. "Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the MENA Region," Sustainability, MDPI, vol. 13(6), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:jclnws:v:5:y:2021:i:2:p:39-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://jcleanwas.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.