IDEAS home Printed from https://ideas.repec.org/a/zbw/jumsac/294923.html
   My bibliography  Save this article

Stochastic Optimization of Bioreactor Control Policies Using a Markov Decision Process Model

Author

Listed:
  • Stockinger, Quirin

Abstract

Biopharmaceuticals are the fastest-growing segment of the pharmaceutical industry. Their manufacture is complicated by the uncertainty exhibited therein. Scholars have studied the planning and operation of such production systems under some uncertainties, but the simultaneous consideration of fermentation and resin yield uncertainty is lacking so-far. To study the optimal operation of biopharmaceutical production and purification systems under these uncertainties, a stochastic, dynamic approach is necessary. This thesis provides such a model by extending an existing discrete state-space, infinite horizon Markov decision process model of upstream fermentation. Tissue Plasminogen Activator fermentation and chromatography was implemented. This example was used to discuss the optimal policy for operating different fermentation setups. The average per-cycle operating profit of a serial setup was 1,272 $; the parallel setup produced negative average rewards. Managerial insights were derived from a comparison to a basic, titer maximizing policy and process sensitivities. In conclusion, the integrated stochastic optimization of biopharma production and purification control aids decision making. However, the model assumptions pose room for further studies.

Suggested Citation

  • Stockinger, Quirin, 2020. "Stochastic Optimization of Bioreactor Control Policies Using a Markov Decision Process Model," Junior Management Science (JUMS), Junior Management Science e. V., vol. 5(1), pages 50-80.
  • Handle: RePEc:zbw:jumsac:294923
    DOI: 10.5282/jums/v5i1pp50-80
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/294923/1/5064-3267.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5282/jums/v5i1pp50-80?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tugce Martagan & Ananth Krishnamurthy & Peter A. Leland & Christos T. Maravelias, 2018. "Performance Guarantees and Optimal Purification Decisions for Engineered Proteins," Operations Research, INFORMS, vol. 66(1), pages 18-41, 1-2.
    2. Tugce Martagan & Ananth Krishnamurthy & Christos T. Maravelias, 2016. "Optimal condition-based harvesting policies for biomanufacturing operations with failure risks," IISE Transactions, Taylor & Francis Journals, vol. 48(5), pages 440-461, May.
    3. Hanniel Ferreira Sarmento de Freitas & José Eduardo Olivo & Cid Marcos Gonçalves Andrade, 2017. "Optimization of Bioethanol In Silico Production Process in a Fed-Batch Bioreactor Using Non-Linear Model Predictive Control and Evolutionary Computation Techniques," Energies, MDPI, vol. 10(11), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Zheng & Wei Xie & Ilya O. Ryzhov & Dongming Xie, 2023. "Policy Optimization in Dynamic Bayesian Network Hybrid Models of Biomanufacturing Processes," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 66-82, January.
    2. Tugce Martagan & Ananth Krishnamurthy & Peter A. Leland, 2020. "Managing Trade-offs in Protein Manufacturing: How Much to Waste?," Manufacturing & Service Operations Management, INFORMS, vol. 22(2), pages 330-345, March.
    3. Tugce Martagan & Ivo Adan & Marc Baaijens & Coen Dirckx & Oscar Repping & Bram van Ravenstein & PK Yegneswaran, 2023. "Merck Animal Health Uses Operations Research Methods to Transform Biomanufacturing Productivity for Lifesaving Medicines," Interfaces, INFORMS, vol. 53(1), pages 85-95, January.
    4. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    5. Tugce Martagan & Ananth Krishnamurthy & Peter A. Leland & Christos T. Maravelias, 2018. "Performance Guarantees and Optimal Purification Decisions for Engineered Proteins," Operations Research, INFORMS, vol. 66(1), pages 18-41, 1-2.
    6. Maurizio Carlini & Sonia Castellucci & Guomin Sun & Jinsong Leng & Carlo Cattani & Alessandro Cardarelli, 2018. "A Wavelet-Based Optimization Method for Biofuel Production," Energies, MDPI, vol. 11(2), pages 1-17, February.
    7. Mabel C. Chou & Mahmut Parlar & Yun Zhou, 2017. "Optimal Timing to Initiate Medical Treatment for a Disease Evolving as a Semi-Markov Process," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 194-217, October.
    8. Tugce Martagan & Yasemin Limon & Ananth Krishnamurthy & Tom Foti & Peter Leland, 2019. "Aldevron Accelerates Growth Using Operations Research in Biomanufacturing," Interfaces, INFORMS, vol. 49(2), pages 137-153, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:jumsac:294923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://jums.academy/en/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.