IDEAS home Printed from https://ideas.repec.org/a/zan/ygzier/v22y2013i1p5-10.html
   My bibliography  Save this article

The Accuracy Of Macroeconomic Forecasts Based On Bayesian Vectorial-Autoregressive Models. Comparative Analysis Romania-Poland

Author

Listed:
  • Mihaela SIMIONESCU

    (Institute for Economic Forecasting of the Romanian Academy, Bucharest, Romania)

  • Yuriy BILAN

    (Szczecin University, Faculty of Economics and Management, Szczecin, Poland)

Abstract

The aim of this research is to make predictions for macroeconomic variables like inflation rate, unemployment rate and exchange rate for Romania and Poland using BVAR models. The one-step-ahead forecasts cover the horizon 2011-2013. Direct forecasts were developed using three types of priors for data covering the period from 1990 to 2012: Minnesota priors, non-informative priors and natural-conjugate priors. The forecasts’ accuracy assessment based on generalized forecast error of second moment put in evidence the superiority of Poland’s predictions based on a BVAR(2) model, compared to Romania’s ones based on a BVAR(4) model for differenced and stationary data series. For inflation rate the forecasts are rather inaccurate, but for Poland the Minnesota priors and for Romania the non-informative priors determined the most accurate predictions for unemployment rate and exchange rate on the horizon 2011-2012. It is very likely that these types of priors generate the best forecasts in 2013

Suggested Citation

  • Mihaela SIMIONESCU & Yuriy BILAN, 2013. "The Accuracy Of Macroeconomic Forecasts Based On Bayesian Vectorial-Autoregressive Models. Comparative Analysis Romania-Poland," THE YEARBOOK OF THE "GH. ZANE" INSTITUTE OF ECONOMIC RESEARCHES, Gheorghe Zane Institute for Economic and Social Research ( from THE ROMANIAN ACADEMY, JASSY BRANCH), vol. 22(1), pages 5-10.
  • Handle: RePEc:zan:ygzier:v:22:y:2013:i:1:p:5-10
    as

    Download full text from publisher

    File URL: http://ices.ro/RePEc/zan/ygzier/2013/YGZIER_V22_ISS1_5to10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher A. Sims & Tao Zha, 1999. "Error Bands for Impulse Responses," Econometrica, Econometric Society, vol. 67(5), pages 1113-1156, September.
    2. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    3. Gordon, David B & Leeper, Eric M, 1994. "The Dynamic Impacts of Monetary Policy: An Exercise in Tentative Identification," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1228-1247, December.
    4. Mr. Matteo Ciccarelli & Mr. Alessandro Rebucci, 2003. "Bayesian Vars: A Survey of the Recent Literature with An Application to the European Monetary System," IMF Working Papers 2003/102, International Monetary Fund.
    5. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    6. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Damian Stelmasiak & Grzegorz Szafrański, 2016. "Forecasting the Polish Inflation Using Bayesian VAR Models with Seasonality," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 21-42, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pauwels, Koen & Demirci, Ceren & Yildirim, Gokhan & Srinivasan, Shuba, 2016. "The impact of brand familiarity on online and offline media synergy," International Journal of Research in Marketing, Elsevier, vol. 33(4), pages 739-753.
    2. Leeper, Eric M. & Zha, Tao, 2003. "Modest policy interventions," Journal of Monetary Economics, Elsevier, vol. 50(8), pages 1673-1700, November.
    3. Eric M. Leeper & Tao Zha, 2002. "Empirical analysis of policy interventions," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    4. Fady Barsoum, 2013. "The Effects of Monetary Policy Shocks on a Panel of Stock Market Volatilities: A Factor-Augmented Bayesian VAR Approach," Working Paper Series of the Department of Economics, University of Konstanz 2013-15, Department of Economics, University of Konstanz.
    5. Ni, Shawn & Sun, Dongchu, 2003. "Noninformative priors and frequentist risks of bayesian estimators of vector-autoregressive models," Journal of Econometrics, Elsevier, vol. 115(1), pages 159-197, July.
    6. Anastasios Evgenidis & Apostolos Fasianos, 2021. "Unconventional Monetary Policy and Wealth Inequalities in Great Britain," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(1), pages 115-175, February.
    7. Stefano Neri & Tiziano Ropele, 2015. "The macroeconomic effects of the sovereign debt crisis in the euro area," Temi di discussione (Economic working papers) 1007, Bank of Italy, Economic Research and International Relations Area.
    8. Waggoner, Daniel F. & Zha, Tao, 2003. "A Gibbs sampler for structural vector autoregressions," Journal of Economic Dynamics and Control, Elsevier, vol. 28(2), pages 349-366, November.
    9. John C. Robertson & Ellis W. Tallman, 1999. "Prior parameter uncertainty: Some implications for forecasting and policy analysis with VAR models," FRB Atlanta Working Paper 99-13, Federal Reserve Bank of Atlanta.
    10. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    11. Fabian Fink & Yves S. Schüler, 2013. "The Transmission of US Financial Stress: Evidence for Emerging Market Economies," Working Paper Series of the Department of Economics, University of Konstanz 2013-01, Department of Economics, University of Konstanz.
    12. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    13. Mr. Serhat Solmaz & Marzie Taheri Sanjani, 2015. "How External Factors Affect Domestic Economy: Nowcasting an Emerging Market," IMF Working Papers 2015/269, International Monetary Fund.
    14. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Group Publishing Limited.
    15. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    16. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
    17. Demeshev, Boris & Malakhovskaya, Oxana, 2016. "BVAR mapping," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 43, pages 118-141.
    18. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    19. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    20. И Управления Мир Экономики, 2017. "Байесовский подход к анализу влияния монетарной политики на макроэкономические показатели России. Bayesian approach to the analysis of monetary policy impact on Russian macroeconomics indicators," Мир экономики и управления // Вестник НГУ. Cерия: Cоциально-экономические науки, Socionet;Новосибирский государственный университет, vol. 17(4), pages 53-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zan:ygzier:v:22:y:2013:i:1:p:5-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alecu Ionel Ciprian (email available below). General contact details of provider: https://edirc.repec.org/data/icessro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.