IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v3y2016p57-68id1230.html
   My bibliography  Save this article

Advances in antithetic time series analysis: separating fact from artifact

Author

Listed:
  • Dennis Ridley

Abstract

The problem of biased time series mathematical model parameter estimates is well known to be insurmountable. When used to predict future values by extrapolation, even a de minimis bias will eventually grow into a large bias, with misleading results. This paper elucidates how combining antithetic time series’ solves this baffling problem of bias in the fitted and forecast values by dynamic bias cancellation. Instead of growing to infinity, the average error can converge to a constant.

Suggested Citation

  • Dennis Ridley, 2016. "Advances in antithetic time series analysis: separating fact from artifact," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(3), pages 57-68.
  • Handle: RePEc:wut:journl:v:3:y:2016:p:57-68:id:1230
    DOI: 10.5277/ord160304
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/1230%20-%20published.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5277/ord160304?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Bo & Nychka, Douglas W. & Ammann, Caspar M., 2010. "The Value of Multiproxy Reconstruction of Past Climate," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 883-895.
    2. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Ridley & Pierre Ngnepieba, 2014. "Antithetic time series analysis and the CompanyX data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(1), pages 83-94, January.
    2. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    3. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    4. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    5. Jakub Nowotarski, 2013. "Short-term forecasting of electricity spot prices using model averaging (Krótkoterminowe prognozowanie spotowych cen energii elektrycznej z wykorzystaniem uśredniania modeli)," HSC Research Reports HSC/13/17, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    6. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    7. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    8. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    9. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    10. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    11. Giancarlo Lutero & Marco Marini, 2010. "Direct vs Indirect Forecasts of Foreign Trade Unit Value Indices," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 12(2-3), pages 73-96, October.
    12. Pär Österholm, 2009. "Incorporating Judgement in Fan Charts," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 387-415, June.
    13. Peng W. He & Andrew Grant & Joel Fabre, 2013. "Economic value of analyst recommendations in Australia: an application of the Black–Litterman asset allocation model," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 53(2), pages 441-470, June.
    14. Bell, William Paul, 2008. "Adaptive Interactive Profit Expectations and Small World Networks," MPRA Paper 37924, University Library of Munich, Germany.
    15. repec:cup:judgdm:v:8:y:2013:i:2:p:91-105 is not listed on IDEAS
    16. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    17. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    18. Elkin Castaño & Luis Fernando Melo, 1998. "Métodos de Combinación de Pronósticos: Una Aplicación a la Inflación Colombiana," Borradores de Economia 109, Banco de la Republica de Colombia.
    19. Nigel Meade & Towhidul Islam, 1998. "Technological Forecasting---Model Selection, Model Stability, and Combining Models," Management Science, INFORMS, vol. 44(8), pages 1115-1130, August.
    20. Joseph Kadane & Javier Girón & Daniel Peña & Peter Fishburn & Simon French & D. Lindley & Giovanni Parmigiani & Robert Winkler, 1993. "Several Bayesians: A review," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 2(1), pages 1-32, December.
    21. Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:3:y:2016:p:57-68:id:1230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.