IDEAS home Printed from https://ideas.repec.org/a/wut/journl/v34y2024i1p211-232id11.html
   My bibliography  Save this article

How to know it is “the one”? Selecting the most suitable solution from the Pareto optimal set. Application to sectorization

Author

Listed:
  • Elif Göksu Öztürk
  • Ana Maria Rodrigues
  • José Soeiro Ferreira
  • Cristina Teles Oliveira

Abstract

Multi-objective optimization (MOO) considers several objectives to find a feasible set of solutions. Selecting a solution from Pareto frontier (PF) solutions requires further effort. This work proposes a new classification procedure that fits into the analytic hierarchy Process (AHP) to pick the best solution. The method classifies PF solutions using pairwise comparison matrices for each objective. Sectorization is the problem of splitting a region into smaller sectors based on multiple objectives. The efficacy of the proposed method is tested in such problems using our instances and real data from a Portuguese delivery company. A non-dominated sorting genetic algorithm (NSGA-II) is used to obtain PF solutions based on three objectives. The proposed method rapidly selects an appropriate solution. The method was assessed by comparing it with a method based on a weighted composite single-objective function.

Suggested Citation

  • Elif Göksu Öztürk & Ana Maria Rodrigues & José Soeiro Ferreira & Cristina Teles Oliveira, 2024. "How to know it is “the one”? Selecting the most suitable solution from the Pareto optimal set. Application to sectorization," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 34(1), pages 211-232.
  • Handle: RePEc:wut:journl:v:34:y:2024:i:1:p:211-232:id:11
    DOI: 10.37190/ord240111
    as

    Download full text from publisher

    File URL: https://ord.pwr.edu.pl/assets/papers_archive/ord2024vol34no1_11.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.37190/ord240111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bozkaya, Burcin & Erkut, Erhan & Laporte, Gilbert, 2003. "A tabu search heuristic and adaptive memory procedure for political districting," European Journal of Operational Research, Elsevier, vol. 144(1), pages 12-26, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amy Cohn & Michael Magazine & George Polak, 2009. "Rank‐Cluster‐and‐Prune: An algorithm for generating clusters in complex set partitioning problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(3), pages 215-225, April.
    2. Rodrigo Rebolledo & Ana Ulloa & Óscar Cornejo & Carlos Obreque & Felipe Baesler, 2024. "Optimizing Districting and Seat Allocation for Enhanced Representativeness in Chile’s Chamber of Deputies," Mathematics, MDPI, vol. 12(24), pages 1-14, December.
    3. Rui Fragoso & Conceição Rego & Vladimir Bushenkov, 2016. "Clustering of Territorial Areas: A Multi-Criteria Districting Problem," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 179-198, December.
    4. Xin Tang & Ameur Soukhal & Vincent T’kindt, 2014. "Preprocessing for a map sectorization problem by means of mathematical programming," Annals of Operations Research, Springer, vol. 222(1), pages 551-569, November.
    5. Steiner, Maria Teresinha Arns & Datta, Dilip & Steiner Neto, Pedro José & Scarpin, Cassius Tadeu & Rui Figueira, José, 2015. "Multi-objective optimization in partitioning the healthcare system of Parana State in Brazil," Omega, Elsevier, vol. 52(C), pages 53-64.
    6. Haugland, Dag & Ho, Sin C. & Laporte, Gilbert, 2007. "Designing delivery districts for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 180(3), pages 997-1010, August.
    7. Douglas M. King & Sheldon H. Jacobson & Edward C. Sewell & Wendy K. Tam Cho, 2012. "Geo-Graphs: An Efficient Model for Enforcing Contiguity and Hole Constraints in Planar Graph Partitioning," Operations Research, INFORMS, vol. 60(5), pages 1213-1228, October.
    8. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    9. Swamy, Rahul & King, Douglas M. & Ludden, Ian G. & Dobbs, Kiera W. & Jacobson, Sheldon H., 2024. "A practical optimization framework for political redistricting: A case study in Arizona," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    10. Balázs Fleiner & Balázs Nagy & Attila Tasnádi, 2017. "Optimal partisan districting on planar geographies," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 879-888, December.
    11. Federica Ricca & Andrea Scozzari & Bruno Simeone, 2013. "Political Districting: from classical models to recent approaches," Annals of Operations Research, Springer, vol. 204(1), pages 271-299, April.
    12. Dilip Datta & Jacek Malczewski & José Rui Figueira, 2012. "Spatial Aggregation and Compactness of Census Areas with a Multiobjective Genetic Algorithm: A Case Study in Canada," Environment and Planning B, , vol. 39(2), pages 376-392, April.
    13. Djordje Dugošija & Aleksandar Savić & Zoran Maksimović, 2020. "A new integer linear programming formulation for the problem of political districting," Annals of Operations Research, Springer, vol. 288(1), pages 247-263, May.
    14. Farahani, Reza Zanjirani & Asgari, Nasrin, 2007. "Combination of MCDM and covering techniques in a hierarchical model for facility location: A case study," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1839-1858, February.
    15. Fleszar, K. & Hindi, K.S., 2008. "An effective VNS for the capacitated p-median problem," European Journal of Operational Research, Elsevier, vol. 191(3), pages 612-622, December.
    16. Christian Haas & Lee Hachadoorian & Steven O Kimbrough & Peter Miller & Frederic Murphy, 2020. "Seed-Fill-Shift-Repair: A redistricting heuristic for civic deliberation," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-34, September.
    17. Antonio Diglio & Stefan Nickel & Francisco Saldanha-da-Gama, 2020. "Towards a stochastic programming modeling framework for districting," Annals of Operations Research, Springer, vol. 292(1), pages 249-285, September.
    18. Cortinhal, Maria João & Mourão, Maria Cândida & Nunes, Ana Catarina, 2016. "Local search heuristics for sectoring routing in a household waste collection context," European Journal of Operational Research, Elsevier, vol. 255(1), pages 68-79.
    19. Flavia Bonomo & Diego Delle Donne & Guillermo Durán & Javier Marenco, 2013. "Automatic Dwelling Segmentation of the Buenos Aires Province for the 2010 Argentinian Census," Interfaces, INFORMS, vol. 43(4), pages 373-384, August.
    20. Hyun Kim & Yongwan Chun & Kamyoung Kim, 2015. "Delimitation of Functional Regions Using a p-Regions Problem Approach," International Regional Science Review, , vol. 38(3), pages 235-263, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wut:journl:v:34:y:2024:i:1:p:211-232:id:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Adam Kasperski (email available below). General contact details of provider: https://edirc.repec.org/data/iopwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.