IDEAS home Printed from https://ideas.repec.org/a/wsi/wepxxx/v02y2016i02ns2382624x16500144.html
   My bibliography  Save this article

Improving Allocative Efficiency of Scarce Water in Southern Alberta

Author

Listed:
  • Md Kamar Ali

    (Department of Economics, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada)

Abstract

Using a positive mathematical programming (PMP) model with improved ‘wide-scope’ calibration, this study demonstrates how allocative efficiency of scarce water could be improved in the Bow- and Oldman River Sub Basins (BRSB and ORSB) of Southern Alberta, where 12 irrigation districts, two cities and three major industrial/commercial users withdraw bulk of the surface water for irrigation, municipal, industrial and commercial needs. Earlier studies ironically neglected the larger ORSB even though it is subject to the same water licensing and regulation policies as the BRSB. The inclusion of nine irrigation districts and non-irrigation users of ORSB enables this model to estimate allocative efficiency gains in a more comprehensive manner than before. Results indicate that ORSB has a relatively less elastic water demand curve primarily due to its more reliance on irrigation and less water saving/supply options. It is also less responsive to allocations with alternative policies as reflected in net returns, land use and cropping pattern changes due to its less elastic water demand.

Suggested Citation

  • Md Kamar Ali, 2016. "Improving Allocative Efficiency of Scarce Water in Southern Alberta," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-22, June.
  • Handle: RePEc:wsi:wepxxx:v:02:y:2016:i:02:n:s2382624x16500144
    DOI: 10.1142/S2382624X16500144
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2382624X16500144
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2382624X16500144?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lixia He & Theodore M. Horbulyk, 2010. "Market‐Based Policy Instruments, Irrigation Water Demand, and Crop Diversification in the Bow River Basin of Southern Alberta," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 58(2), pages 191-213, June.
    2. Blanco, Maria & Cortignani, Raffaele & Severini, Simone, 2008. "Evaluating Changes in Cropping Patterns due to the 2003 CAP Reform. An Ex-post Analysis of Different PMP Approaches Considering New Activities," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6674, European Association of Agricultural Economists.
    3. Ottmar Röhm & Stephan Dabbert, 2003. "Integrating Agri-Environmental Programs into Regional Production Models: An Extension of Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 254-265.
    4. Ali, Md Kamar & Klein, K.K., 2014. "Implications of current and alternative water allocation policies in the Bow River Sub Basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 133(C), pages 1-11.
    5. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    6. Quirino Paris & Richard E. Howitt, 1998. "An Analysis of Ill-Posed Production Problems Using Maximum Entropy," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(1), pages 124-138.
    7. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.
    8. Howitt, Richard E., 2005. "PMP Based Production Models-Development and Integration," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24484, European Association of Agricultural Economists.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Md Kamar & Klein, K.K., 2014. "Implications of current and alternative water allocation policies in the Bow River Sub Basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 133(C), pages 1-11.
    2. He, Lixia & Horbulyk, Theodore M. & Ali, Md. Kamar & Le Roy, Danny G. & Klein, K.K., 2012. "Proportional water sharing vs. seniority-based allocation in the Bow River basin of Southern Alberta," Agricultural Water Management, Elsevier, vol. 104(C), pages 21-31.
    3. Wang, Shuping & Tan, Qian & Zhang, Tianyuan & Zhang, Tong, 2022. "Water management policy analysis: Insight from a calibration-based inexact programming method," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Donati, Michele & Bodini, Diego & Arfini, Filippo & Zezza, Annalisa, 2013. "An integrated PMP model to assess the development of agro-energy crops and the effect on water requirements," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 2(3), pages 1-21, December.
    5. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    6. Carpentier, Alain & Letort, Elodie, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers 211011, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    7. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    8. Fragoso, R. & Marques, C. & Lucas, M.R. & Martins, M.B. & Jorge, R., 2011. "The economic effects of common agricultural policy on Mediterranean montado/dehesa ecosystem," Journal of Policy Modeling, Elsevier, vol. 33(2), pages 311-327, March.
    9. Yan, Tingting & Wang, Jinxia & Huang, Jikun, 2015. "Urbanization, agricultural water use, and regional and national crop production in China," Ecological Modelling, Elsevier, vol. 318(C), pages 226-235.
    10. Cortignani, Raffaele & Severini, Simone, 2009. "Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming," Agricultural Water Management, Elsevier, vol. 96(12), pages 1785-1791, December.
    11. Mugurel Ionel JITEA & Diana Elena DUMITRAȘ & Vasile Alexandru SIMU, 2015. "An ex-ante impact assessment of the Common Agricultural Policy reform in the North-Western Romania," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 61(2), pages 88-103.
    12. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    13. Ali, Md Kamar & Klein, Kurt K., 2013. "Implications of Current and Alternative Water Allocation Policies in the Bow River Sub Basin of Southern Alberta," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149734, Agricultural and Applied Economics Association.
    14. Rui Manuel de Sousa Fragoso & Maria de Belém Ferreira da Silva Costa Freitas & Maria Raquel David Pereira Ventura Lucas & Carlos Alberto Falcão Marques, 2009. "The Economic Effects of Common Agricultural Policy Trends on Montado Ecosystem in Southern Portugal," CEFAGE-UE Working Papers 2009_12, University of Evora, CEFAGE-UE (Portugal).
    15. Heckelei, Thomas & Britz, Wolfgang, 2005. "Models Based on Positive Mathematical Programming: State of the Art and Further Extensions," 89th Seminar, February 2-5, 2005, Parma, Italy 234607, European Association of Agricultural Economists.
    16. Cortignani, Raffaele & Severini, Simone, 2010. "The impact of reforming the Common Agricultural Policy on the sustainability of the irrigated area of Central Italy. An empirical assessment by means of a Positive Mathematical Programming model," 120th Seminar, September 2-4, 2010, Chania, Crete 109318, European Association of Agricultural Economists.
    17. Najafi Alamdarlo, Hamed & Pourmozafar, Hosein & Vakilpoor, Mohamad Hasan, 2019. "Improving demand technology and internalizing external effects in groundwater market framework, case study: Qazvin plain in Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 164-173.
    18. Arfini, Filippo & Donati, Michele, 2011. "Organic Productions and Capacity to Respond to Market Signals and Policies: An Empirical Analysis of a Sample of FADN Farms," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114229, European Association of Agricultural Economists.
    19. Jon Duan & G. Cornelis van Kooten & A. T. M. Hasibul Islam, 2023. "Calibration of Grid Models for Analyzing Energy Policies," Energies, MDPI, vol. 16(3), pages 1-21, January.
    20. Blanco Fonseca, Maria & Iglesias Martinez, Eva, 2005. "Modelling New EU Agricultural Policies: Global Guidelines, Local Strategies," 89th Seminar, February 2-5, 2005, Parma, Italy 232644, European Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:wepxxx:v:02:y:2016:i:02:n:s2382624x16500144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/wep/wep.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.