IDEAS home Printed from https://ideas.repec.org/a/wsi/serxxx/v48y2003i02ns0217590803000712.html
   My bibliography  Save this article

Forecasting Daily Foreign Exchange Rate In India With Artificial Neural Network

Author

Listed:
  • CHAKRADHARA PANDA

    (Department of Economics, University of Hyderabad, India)

  • V. NARASIMHAN

    (Department of Economics, University of Hyderabad, India)

Abstract

This study compares the efficiency of a non-linear model called artificial neural network with linear autoregressive and random walk models in the one-step-ahead prediction of daily Indian rupee/US dollar exchange rate. We find that neural network and linear autoregressive models outperform random walk model in in-sample and out-of-sample forecasts. The in-sample forecasting of neural network is found to be better than that of linear autoregressive model. As far as out-of-sample forecasting is concerned, the results are mixed and we do not find a "winner" model between neural network and linear autoregressive model. However, neural network is able to improve upon the linear autoregressive model in terms of sign predictions. In addition to this, we also find that the number of input nodes has greater impact on neural network's performance than the number of hidden nodes.

Suggested Citation

  • Chakradhara Panda & V. Narasimhan, 2003. "Forecasting Daily Foreign Exchange Rate In India With Artificial Neural Network," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 48(02), pages 181-199.
  • Handle: RePEc:wsi:serxxx:v:48:y:2003:i:02:n:s0217590803000712
    DOI: 10.1142/S0217590803000712
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217590803000712
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217590803000712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engel, Charles, 1994. "Can the Markov switching model forecast exchange rates?," Journal of International Economics, Elsevier, vol. 36(1-2), pages 151-165, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manish KUMAR, 2009. "Exploiting The Information Of Stock Market To Forecast Exchange Rate Movements," Analele Stiintifice ale Universitatii "Alexandru Ioan Cuza" din Iasi - Stiinte Economice (1954-2015), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 56, pages 563-575, November.
    2. Panda, Chakradhara & Narasimhan, V., 2007. "Forecasting exchange rate better with artificial neural network," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 227-236.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    2. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    3. Vigfusson, Robert, 1997. "Switching between Chartists and Fundamentalists: A Markov Regime-Switching Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 291-305, October.
    4. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    5. Moerman, G.A., 2001. "Unpredictable After All? A short note on exchange rate predictability," ERIM Report Series Research in Management ERS-2001-29-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
    7. Reitz, Stefan, 2006. "On the predictive content of technical analysis," The North American Journal of Economics and Finance, Elsevier, vol. 17(2), pages 121-137, August.
    8. Kleopatra Nikolaou, 2007. "The behaviour of the real exchange rate: Evidence from regression quantiles," Money Macro and Finance (MMF) Research Group Conference 2006 46, Money Macro and Finance Research Group.
    9. Imad Moosa & Kelly Burns, 2014. "Error correction modelling and dynamic specifications as a conduit to outperforming the random walk in exchange rate forecasting," Applied Economics, Taylor & Francis Journals, vol. 46(25), pages 3107-3118, September.
    10. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    11. Hamid Baghestani, 2010. "Evaluating Blue Chip forecasts of the trade-weighted dollar exchange rate," Applied Financial Economics, Taylor & Francis Journals, vol. 20(24), pages 1879-1889.
    12. Rossi, Barbara, 2006. "Are Exchange Rates Really Random Walks? Some Evidence Robust To Parameter Instability," Macroeconomic Dynamics, Cambridge University Press, vol. 10(1), pages 20-38, February.
    13. Kim, Young Min & Lee, Seojin, 2023. "Spillover shifts in the FX market: Implication for the behavior of a safe haven currency," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    14. Blagov, Boris & Funke, Michael, 2019. "The Regime-Dependent Evolution Of Credibility: A Fresh Look At Hong Kong'S Linked Exchange Rate System," Macroeconomic Dynamics, Cambridge University Press, vol. 23(6), pages 2434-2468, September.
    15. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    16. Michael Frömmel & Darko B. Vukovic & Jinyuan Wu, 2022. "The Dollar Exchange Rate, Adjustment to the Purchasing Power Parity, and the Interest Rate Differential," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    17. Yu‐Fu Chen & Michael Funke & Richhild Moessner, 2018. "Informal one‐sided target zone model and the Swiss franc," Review of International Economics, Wiley Blackwell, vol. 26(5), pages 1130-1153, November.
    18. Wang, Rudan & Morley, Bruce & Stamatogiannis, Michalis P., 2019. "Forecasting the exchange rate using nonlinear Taylor rule based models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 429-442.
    19. Josh Stillwagon & Peter Sullivan, 2020. "Markov switching in exchange rate models: will more regimes help?," Empirical Economics, Springer, vol. 59(1), pages 413-436, July.
    20. Joscha Beckmann & Robert Czudaj, 2017. "Effective Exchange Rates, Current Accounts and Global Imbalances," Review of International Economics, Wiley Blackwell, vol. 25(3), pages 500-533, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:serxxx:v:48:y:2003:i:02:n:s0217590803000712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ser/ser.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.