IDEAS home Printed from https://ideas.repec.org/a/wsi/nmncxx/v14y2018i03ns1793005718500217.html
   My bibliography  Save this article

Approaches to Multi-Attribute Group Decision Making Based on Induced Interval-Valued Pythagorean Fuzzy Einstein Aggregation Operator

Author

Listed:
  • K. Rahman

    (Department of Mathematics, Hazara University Mansehra, KPK, Pakistan)

  • A. Ali

    (Department of Mathematics, Hazara University Mansehra, KPK, Pakistan)

  • S. Abdullah

    (#x2020;Department of Mathematics, Abdul Wali Khan University Mardan, Pakistan)

  • F. Amin

    (Department of Mathematics, Hazara University Mansehra, KPK, Pakistan)

Abstract

Interval-valued Pythagorean fuzzy set is one of the successful extensions of the interval-valued intuitionistic fuzzy set for handling the uncertainties in the data. Under this environment, in this paper, we introduce the notion of induced interval-valued Pythagorean fuzzy Einstein ordered weighted averaging (I-IVPFEOWA) aggregation operator. Some of its desirable properties namely, idempotency, boundedness, commutatively, monotonicity have also been proved. The main advantage of using the proposed operator is that this operator gives a more complete view of the problem to the decision-makers. The method proposed in this paper provides more general, more accurate and precise results as compared to the existing methods. Therefore this method play a vital role in real world problems. Finally, we apply the proposed operator to deal with multi-attribute group decision- making problems under interval-valued Pythagorean fuzzy information. The approach has been illustrated with a numerical example from the field of the decision-making problems to show the validity, practicality and effectiveness of the new approach.

Suggested Citation

  • K. Rahman & A. Ali & S. Abdullah & F. Amin, 2018. "Approaches to Multi-Attribute Group Decision Making Based on Induced Interval-Valued Pythagorean Fuzzy Einstein Aggregation Operator," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 343-361, November.
  • Handle: RePEc:wsi:nmncxx:v:14:y:2018:i:03:n:s1793005718500217
    DOI: 10.1142/S1793005718500217
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S1793005718500217
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S1793005718500217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Z., 2000. "On consistency of the weighted geometric mean complex judgement matrix in AHP," European Journal of Operational Research, Elsevier, vol. 126(3), pages 683-687, November.
    2. Harish Garg, 2017. "Confidence levels based Pythagorean fuzzy aggregation operators and its application to decision-making process," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 546-571, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hari Darshan Arora & Anjali Naithani, 2022. "Logarithmic similarity measures on Pythagorean fuzzy sets in admission process," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 32(1), pages 5-24.
    2. Zhang, Mengdan & Zhang, Chonghui & Shi, Qiule & Zeng, Shouzhen & Balezentis, Tomas, 2022. "Operationalizing the telemedicine platforms through the social network knowledge: An MCDM model based on the CIPFOHW operator," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    2. Rabelo, Luis & Eskandari, Hamidreza & Shaalan, Tarek & Helal, Magdy, 2007. "Value chain analysis using hybrid simulation and AHP," International Journal of Production Economics, Elsevier, vol. 105(2), pages 536-547, February.
    3. Jongseok Seo & Lidziya Lysiankova & Young-Seok Ock & Dongphil Chun, 2017. "Priorities of Coworking Space Operation Based on Comparison of the Hosts and Users’ Perspectives," Sustainability, MDPI, vol. 9(8), pages 1-10, August.
    4. Mi Jung Son & Jin Han Park & Ka Hyun Ko, 2019. "Some Hesitant Fuzzy Hamacher Power-Aggregation Operators for Multiple-Attribute Decision-Making," Mathematics, MDPI, vol. 7(7), pages 1-33, July.
    5. Toly Chen, 2021. "A diversified AHP-tree approach for multiple-criteria supplier selection," Computational Management Science, Springer, vol. 18(4), pages 431-453, October.
    6. Mamata Sahu & Anjana Gupta, 2019. "Improving the consistency of incomplete hesitant multiplicative preference relation," OPSEARCH, Springer;Operational Research Society of India, vol. 56(1), pages 324-343, March.
    7. Xu, Zeshui & Chen, Jian, 2008. "Some models for deriving the priority weights from interval fuzzy preference relations," European Journal of Operational Research, Elsevier, vol. 184(1), pages 266-280, January.
    8. Liu Fang & Peng Yanan & Zhang Weiguo & Pedrycz Witold, 2017. "On Consistency in AHP and Fuzzy AHP," Journal of Systems Science and Information, De Gruyter, vol. 5(2), pages 128-147, April.
    9. Gallego, Aurea & Calafat, Consuelo & Segura, Marina & Quintanilla, Israel, 2019. "Land planning and risk assessment for livestock production based on an outranking approach and GIS," Land Use Policy, Elsevier, vol. 83(C), pages 606-621.
    10. Zhu, Bin & Xu, Zeshui, 2014. "Analytic hierarchy process-hesitant group decision making," European Journal of Operational Research, Elsevier, vol. 239(3), pages 794-801.
    11. Aull-Hyde, Rhonda & Erdogan, Sevgi & Duke, Joshua M., 2006. "An experiment on the consistency of aggregated comparison matrices in AHP," European Journal of Operational Research, Elsevier, vol. 171(1), pages 290-295, May.
    12. Xian Xu & Peter Zweifel, 2020. "A framework for the evaluation of InsurTech," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 23(4), pages 305-329, December.
    13. Zengxian Li & Guiwu Wei & Hui Gao, 2018. "Methods for Multiple Attribute Decision Making with Interval-Valued Pythagorean Fuzzy Information," Mathematics, MDPI, vol. 6(11), pages 1-27, October.
    14. Hsu, David W.L. & Shen, Yung-Chi & Yuan, Benjamin J.C. & Chou, Chiyan James, 2015. "Toward successful commercialization of university technology: Performance drivers of university technology transfer in Taiwan," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 25-39.
    15. Jie Wang & Guiwu Wei & Hui Gao, 2018. "Approaches to Multiple Attribute Decision Making with Interval-Valued 2-Tuple Linguistic Pythagorean Fuzzy Information," Mathematics, MDPI, vol. 6(10), pages 1-45, October.
    16. Jorge Ivan Romero-Gelvez & Monica Garcia-Melon, 2016. "Influence Analysis in Consensus Search — A Multi Criteria Group Decision Making Approach in Environmental Management," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 15(04), pages 791-813, July.
    17. Francisco J. André & Jorge A. Valenciano-Salazar, 2020. "Becoming Carbon Neutral in Costa Rica to Be More Sustainable: An AHP Approach," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    18. Jiang Chao & Jiang Shenqing & Chen Jianlan, 2019. "Interval-Valued Dual Hesitant Fuzzy Hamacher Aggregation Operators for Multiple Attribute Decision Making," Journal of Systems Science and Information, De Gruyter, vol. 7(3), pages 227-256, June.
    19. Mingyue Shi & Rong Jiang & Xiaohan Hu & Jingwei Shang, 2020. "A privacy protection method for health care big data management based on risk access control," Health Care Management Science, Springer, vol. 23(3), pages 427-442, September.
    20. Virgilio López-Morales & Joel Suárez-Cansino, 2017. "Reliable Intervals Method in Decision-Based Support Models for Group Decision-Making," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 183-204, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:nmncxx:v:14:y:2018:i:03:n:s1793005718500217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/nmnc/nmnc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.