IDEAS home Printed from https://ideas.repec.org/a/wsi/jikmxx/v17y2018i02ns0219649218500193.html
   My bibliography  Save this article

Hybrid Group Recommendation Using Modified Termite Colony Algorithm: A Context Towards Big Data

Author

Listed:
  • Arup Roy

    (Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Jharkhand 814142, India)

  • Soumya Banerjee

    (Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Jharkhand 814142, India)

  • Chintan Bhatt

    (Department of Computer Science and Engineering, Charotar University of Science and Technology, Changa, Gujarat 388421, India)

  • Youakim Badr

    (CNRS INSA De Lyon, LIRIS Lab, Lyon, UMR-5205, France)

  • Saurav Mallik

    (Machine Intelligence Unit, Indian Statistical Institute, Kolkata, West Bengal 700108, India)

Abstract

Since the introduction of Web 2.0, group recommendation systems become an effective tool for consulting and recommending items according to the choices of group of likeminded users. However, the population of dataset consisting of the large number of choices increases the size of storage. As a result, identification of the combination for specific recommendation becomes complex. Hence, the existing group recommendation system should support methodology for handling large data volume with varsity. In this paper, we propose a content-boosted modified termite colony optimisation-based rating prediction algorithm (CMTRP) for group recommendation system. CMTRP employs a hybrid recommendation framework with respect to the big data paradigm to deal with the trend of large data. The framework utilises the communal ratings that help to overcome the scalability problem. The experimental results reveal that CMTRP provides less error in the rating prediction and higher recommendation precision compared with the existing algorithms.

Suggested Citation

  • Arup Roy & Soumya Banerjee & Chintan Bhatt & Youakim Badr & Saurav Mallik, 2018. "Hybrid Group Recommendation Using Modified Termite Colony Algorithm: A Context Towards Big Data," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-31, June.
  • Handle: RePEc:wsi:jikmxx:v:17:y:2018:i:02:n:s0219649218500193
    DOI: 10.1142/S0219649218500193
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219649218500193
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219649218500193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    2. Editors, 2014. "International Journal of Systems Science," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(12), pages 1-1, December.
    3. B. P. S. Murthi & Sumit Sarkar, 2003. "The Role of the Management Sciences in Research on Personalization," Management Science, INFORMS, vol. 49(10), pages 1344-1362, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuk Ying Ho & David Bodoff & Kar Yan Tam, 2011. "Timing of Adaptive Web Personalization and Its Effects on Online Consumer Behavior," Information Systems Research, INFORMS, vol. 22(3), pages 660-679, September.
    2. Min Gao & Kecheng Liu & Zhongfu Wu, 2010. "Personalisation in web computing and informatics: Theories, techniques, applications, and future research," Information Systems Frontiers, Springer, vol. 12(5), pages 607-629, November.
    3. Felipe Thomaz & Carolina Salge & Elena Karahanna & John Hulland, 2020. "Learning from the Dark Web: leveraging conversational agents in the era of hyper-privacy to enhance marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 43-63, January.
    4. Kartik Hosanagar & Daniel Fleder & Dokyun Lee & Andreas Buja, 2014. "Will the Global Village Fracture Into Tribes? Recommender Systems and Their Effects on Consumer Fragmentation," Management Science, INFORMS, vol. 60(4), pages 805-823, April.
    5. Huosong Xia & Xiang Wei & Wuyue An & Zuopeng Justin Zhang & Zelin Sun, 2021. "Design of electronic-commerce recommendation systems based on outlier mining," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 295-311, June.
    6. Daniel Fleder & Kartik Hosanagar & Andreas Buja, 2008. "Recommender Systems and their Effects on Consumers: The Fragmentation Debate," Working Papers 08-44, NET Institute, revised Mar 2010.
    7. Yicheng Song & Nachiketa Sahoo & Elie Ofek, 2019. "When and How to Diversify—A Multicategory Utility Model for Personalized Content Recommendation," Management Science, INFORMS, vol. 65(8), pages 3737-3757, August.
    8. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    9. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    10. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    11. Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
    12. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    13. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.
    14. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    15. Jong Won Min, 2019. "The Influence of Stigma and Views on Mental Health Treatment Effectiveness on Service Use by Age and Ethnicity: Evidence From the CDC BRFSS 2007, 2009, and 2012," SAGE Open, , vol. 9(3), pages 21582440198, September.
    16. Zhan (Michael) Shi & T. S. Raghu, 2020. "An Economic Analysis of Product Recommendation in the Presence of Quality and Taste-Match Heterogeneity," Information Systems Research, INFORMS, vol. 31(2), pages 399-411, June.
    17. Voxi Amavilah & Antonio R. Andrés, 2014. "Globalization, Peace & Stability, Governance, and Knowledge Economy," Research Africa Network Working Papers 14/012, Research Africa Network (RAN).
    18. Alwang, Jeffrey & Larochelle, Catherine & Barrera, Victor, 2017. "Farm Decision Making and Gender: Results from a Randomized Experiment in Ecuador," World Development, Elsevier, vol. 92(C), pages 117-129.
    19. Yanina Welp & Ferran Urgell & Eduard Aibar, 2007. "From Bureaucratic Administration to Network Administration? An Empirical Study on E-Government Focus on Catalonia," Public Organization Review, Springer, vol. 7(4), pages 299-316, December.
    20. Moina Ajmeri & Ahmad Ali, 2017. "Analytical design of modified Smith predictor for unstable second-order processes with time delay," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(8), pages 1671-1681, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:jikmxx:v:17:y:2018:i:02:n:s0219649218500193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/jikm/jikm.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.