IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v22y2019i01ns0219024918500619.html
   My bibliography  Save this article

Statistics Of Vix Futures And Applications To Trading Volatility Exchange-Traded Products

Author

Listed:
  • M. AVELLANEDA

    (Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York 10012-1185, NY, USA)

  • A. PAPANICOLAOU

    (Department of Finance and Risk Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn 11201, NY, USA)

Abstract

We study the dynamics of VIX futures and ETNs/ETFs. We find that contrary to classical commodities, VIX and VIX futures exhibit large volatility and skewness, consistent with the absence of cash-and-carry arbitrage. The constant-maturity futures (CMF) term-structure can be modeled as a stationary stochastic process in which the most likely state is contango with VIX ≈ 12% and a long-term futures price V∞≈ 20%. We analyze the behavior of ETFs and ETNs based on constant-maturity rolling futures strategies, such as VXX, XIV and VXZ, assuming stationarity and through a multi-factor model calibrated to historical data. We find that buy-and-hold strategies consisting of shorting ETNs that roll long futures, or buying ETNs that roll short futures, will produce theoretically-sure profits if it is assumed that CMFs are stationary and ergodic. To quantify further, we estimate a 2-factor lognormal model with mean-reverting factors to VIX and CMF historical data from 2011 to 2016. The results confirm the profitability of buy-and-hold strategies, but also indicate that the latter have modest Sharpe ratios, of the order of SR = 0.5 or less, and high variability over 1-year horizon simulations. This is due to the surges in VIX and CMF backwardations which are observed sporadically in the volatility futures market.

Suggested Citation

  • M. Avellaneda & A. Papanicolaou, 2019. "Statistics Of Vix Futures And Applications To Trading Volatility Exchange-Traded Products," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-30, February.
  • Handle: RePEc:wsi:ijtafx:v:22:y:2019:i:01:n:s0219024918500619
    DOI: 10.1142/S0219024918500619
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024918500619
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024918500619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    2. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    3. Christian Bayer & Jim Gatheral & Morten Karlsmark, 2013. "Fast Ninomiya--Victoir calibration of the double-mean-reverting model," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1813-1829, November.
    4. Laurent Laloux & Pierre Cizeau & Marc Potters & Jean-Philippe Bouchaud, 2000. "Random Matrix Theory And Financial Correlations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 391-397.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rama Cont, 2023. "In memoriam: Marco Avellaneda (1955–2022)," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 3-15, January.
    2. Ying-Li Wang & Cheng-Long Xu & Ping He, 2023. "A Markovian empirical model for the VIX index and the pricing of the corresponding derivatives," Papers 2309.08175, arXiv.org.
    3. M. Avellaneda & T. N. Li & A. Papanicolaou & G. Wang, 2021. "Trading Signals In VIX Futures," Papers 2103.02016, arXiv.org, revised Nov 2021.
    4. Andrew Papanicolaou, 2022. "Consistent time‐homogeneous modeling of SPX and VIX derivatives," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 907-940, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barletta, Andrea & Santucci de Magistris, Paolo & Violante, Francesco, 2019. "A non-structural investigation of VIX risk neutral density," Journal of Banking & Finance, Elsevier, vol. 99(C), pages 1-20.
    2. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    3. Sang Byung Seo & Jessica A. Wachter, 2019. "Option Prices in a Model with Stochastic Disaster Risk," Management Science, INFORMS, vol. 65(8), pages 3449-3469, August.
    4. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    5. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    6. Stanislav Khrapov, 2011. "Pricing Central Tendency in Volatility," Working Papers w0168, New Economic School (NES).
    7. Liexin Cheng & Xue Cheng & Xianhua Peng, 2024. "Joint Calibration to SPX and VIX Derivative Markets with Composite Change of Time Models," Papers 2404.16295, arXiv.org, revised Aug 2024.
    8. Li, Junye & Favero, Carlo & Ortu, Fulvio, 2012. "A spectral estimation of tempered stable stochastic volatility models and option pricing," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3645-3658.
    9. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
    10. A. Papanicolaou, 2016. "Analysis of VIX Markets with a Time-Spread Portfolio," Applied Mathematical Finance, Taylor & Francis Journals, vol. 23(5), pages 374-408, September.
    11. M.E. Mancino & S. Scotti & G. Toscano, 2020. "Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(4), pages 288-316, July.
    12. Kim, See-Woo & Kim, Jeong-Hoon, 2018. "Analytic solutions for variance swaps with double-mean-reverting volatility," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 130-144.
    13. Slim, Skander, 2016. "On the source of stochastic volatility: Evidence from CAC40 index options during the subprime crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 63-76.
    14. Ruan, Xinfeng & Zhang, Jin E., 2018. "Equilibrium variance risk premium in a cost-free production economy," Journal of Economic Dynamics and Control, Elsevier, vol. 96(C), pages 42-60.
    15. Antoine Jacquier & Fangwei Shi, 2016. "The randomised Heston model," Papers 1608.07158, arXiv.org, revised Dec 2018.
    16. Sebastian A. Gehricke & Jin E. Zhang, 2018. "Modeling VXX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(8), pages 958-976, August.
    17. Andrew Papanicolaou, 2021. "Extreme-Strike Comparisons and Structural Bounds for SPX and VIX Options," Papers 2101.00299, arXiv.org, revised Mar 2021.
    18. Dew-Becker, Ian & Giglio, Stefano & Le, Anh & Rodriguez, Marius, 2017. "The price of variance risk," Journal of Financial Economics, Elsevier, vol. 123(2), pages 225-250.
    19. Zhangxin (Frank) Liu & Michael J. O'Neill & Tom Smith, 2017. "State-preference pricing and volatility indices," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(3), pages 815-836, September.
    20. Li, Junye, 2012. "Option-implied volatility factors and the cross-section of market risk premia," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 249-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:22:y:2019:i:01:n:s0219024918500619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.