IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v20y2017i02ns0219024917500091.html
   My bibliography  Save this article

On Cash Settled Irr-Swaptions And Markov Functional Modeling

Author

Listed:
  • HANS-PETER BERMIN

    (Knut Wicksell Centre for Financial Studies, Lund University, S-221 00 Lund, Sweden)

  • GARETH WILLIAMS

Abstract

In this paper, we show how to consistently price cash settled Internal Rate of Return (IRR)-swaptions and derivatives on these contracts. There are several results worth highlighting. First, if we know at what fixed coupon an IRR-swap values to par, we can compute the price of any IRR-swaption in a way consistent with absence of arbitrage. We show that this fixed coupon, denoted the IRR-forward, carries an additional convexity adjustment. The size of the adjustment depends mainly on the shape of the volatility surface but also on the skew of the forward. The largest convexity adjustments are seen for IRR-forwards referencing long tenors and long expiries. Second, we show that any Markov functional technique, relating a given term-structure model to the market observed IRR-swaptions, should be carried out with respect to the corresponding forward measure. The modification of the forward swap rate is further shown to consistently value the fixed and the floating leg of the underlying IRR-swap correctly.

Suggested Citation

  • Hans-Peter Bermin & Gareth Williams, 2017. "On Cash Settled Irr-Swaptions And Markov Functional Modeling," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-20, March.
  • Handle: RePEc:wsi:ijtafx:v:20:y:2017:i:02:n:s0219024917500091
    DOI: 10.1142/S0219024917500091
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024917500091
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024917500091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick Hagan & Diana Woodward, 1999. "Markov interest rate models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(4), pages 233-260.
    2. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    3. Hans-Peter Bermin, 2012. "Bonds and Options in Exponentially Affine Bond Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 19(6), pages 513-534, December.
    4. Joanne Kennedy & Phil Hunt & Antoon Pelsser, 2000. "Markov-functional interest rate models," Finance and Stochastics, Springer, vol. 4(4), pages 391-408.
    5. Hans-Peter Bermin, 2014. "On Dynamic Forward Rate Modeling And Principal Component Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    2. Xiao Lin, 2016. "The Zero-Coupon Rate Model for Derivatives Pricing," Papers 1606.01343, arXiv.org, revised Feb 2022.
    3. Hans-Peter Bermin, 2014. "On Dynamic Forward Rate Modeling And Principal Component Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1-20.
    4. Giuseppe Arbia & Michele Di Marcantonio, 2015. "Forecasting Interest Rates Using Geostatistical Techniques," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    5. Tomas Björk & Magnus Blix & Camilla Landén, 2006. "On Finite Dimensional Realizations For The Term Structure Of Futures Prices," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 281-314.
    6. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    7. Foad Shokrollahi & Marcin Marcin Magdziarz, 2020. "Equity warrant pricing under subdiffusive fractional Brownian motion of the short rate," Papers 2007.12228, arXiv.org, revised Nov 2020.
    8. Bühler, Wolfgang & Korn, Olaf, 1998. "Hedging langfristiger Lieferverpflichtungen mit kurzfristigen Futures: möglich oder unmöglich?," ZEW Discussion Papers 98-20, ZEW - Leibniz Centre for European Economic Research.
    9. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    10. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    11. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    12. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    13. Sascha Meyer & Willi Schwarz, 2003. "A PDE based Implementation of the Hull&White Model for Cashflow Derivatives," Computational Statistics, Springer, vol. 18(3), pages 417-434, September.
    14. Y. D'Halluin & P. A. Forsyth & K. R. Vetzal & G. Labahn, 2001. "A numerical PDE approach for pricing callable bonds," Applied Mathematical Finance, Taylor & Francis Journals, vol. 8(1), pages 49-77.
    15. Nicole Branger & An Chen & Antje Mahayni & Thai Nguyen, 2023. "Optimal collective investment: an analysis of individual welfare," Mathematics and Financial Economics, Springer, volume 17, number 5, December.
    16. Spiros H. Martzoukos & Theodore M. Barnhill Jr., 1998. "The Survival Zone For A Bond With Both Call And Put Options Embedded," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 21(4), pages 419-430, December.
    17. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    18. Choi, Jaehyung, 2012. "Spontaneous symmetry breaking of arbitrage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3206-3218.
    19. Giuseppe Orlando & Michele Bufalo, 2021. "Interest rates forecasting: Between Hull and White and the CIR#—How to make a single‐factor model work," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1566-1580, December.
    20. Claudio Albanese & Stéphane Crépey & Stefano Iabichino, 2023. "Quantitative reverse stress testing, bottom up," Quantitative Finance, Taylor & Francis Journals, vol. 23(5), pages 863-875, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:20:y:2017:i:02:n:s0219024917500091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.