IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v15y2012i07ns0219024912500471.html
   My bibliography  Save this article

Nearly Exact Option Price Simulation Using Characteristic Functions

Author

Listed:
  • CAROLE BERNARD

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Av., W. Waterloo, Ontario, N2L 3G1, Canada)

  • ZHENYU CUI

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Av., W. Waterloo, Ontario, N2L 3G1, Canada)

  • DON MCLEISH

    (Department of Statistics and Actuarial Science, University of Waterloo, 200 University Av., W. Waterloo, Ontario, N2L 3G1, Canada)

Abstract

This paper presents a new approach to perform a nearly unbiased simulation using inversion of the characteristic function. As an application we are able to give unbiased estimates of the price of forward starting options in the Heston model and of continuously monitored Parisian options in the Black-Scholes framework. This method of simulation can be applied to problems for which the characteristic functions are easily evaluated but the corresponding probability density functions are complicated.

Suggested Citation

  • Carole Bernard & Zhenyu Cui & Don Mcleish, 2012. "Nearly Exact Option Price Simulation Using Characteristic Functions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(07), pages 1-29.
  • Handle: RePEc:wsi:ijtafx:v:15:y:2012:i:07:n:s0219024912500471
    DOI: 10.1142/S0219024912500471
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024912500471
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024912500471?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan L. Lewis, 2000. "Option Valuation under Stochastic Volatility," Option Valuation under Stochastic Volatility, Finance Press, number ovsv, December.
    2. Marjon Ruijter & Kees Oosterlee, 2012. "Two-dimensional Fourier cosine series expansion method for pricing financial options," CPB Discussion Paper 225, CPB Netherlands Bureau for Economic Policy Analysis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenyu Cui & J. Lars Kirkby & Guanghua Lian & Duy Nguyen, 2017. "Integral Representation Of Probability Density Of Stochastic Volatility Models And Timer Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    2. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    3. Bernard, Carole & Czado, Claudia, 2015. "Conditional quantiles and tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 104-126.
    4. Luca De Gennaro Aquino & Carole Bernard, 2019. "Semi-analytical prices for lookback and barrier options under the Heston model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 715-741, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
    2. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    3. Bertram During & Alexander Pitkin, 2017. "High-order compact finite difference scheme for option pricing in stochastic volatility jump models," Papers 1704.05308, arXiv.org, revised Feb 2019.
    4. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    5. Nicolas Langrené & Geoffrey Lee & Zili Zhu, 2016. "Switching To Nonaffine Stochastic Volatility: A Closed-Form Expansion For The Inverse Gamma Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(05), pages 1-37, August.
    6. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    7. Manley, Bruce & Niquidet, Kurt, 2010. "What is the relevance of option pricing for forest valuation in New Zealand?," Forest Policy and Economics, Elsevier, vol. 12(4), pages 299-307, April.
    8. Slanina, František, 2010. "A contribution to the systematics of stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3230-3239.
    9. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    10. Tobias Behrens & Gero Junike & Wim Schoutens, 2023. "Failure of Fourier pricing techniques to approximate the Greeks," Papers 2306.08421, arXiv.org, revised Nov 2024.
    11. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    12. Minqiang Li, 2015. "Derivatives Pricing on Integrated Diffusion Processes: A General Perturbation Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 35(6), pages 582-595, June.
    13. repec:uts:finphd:40 is not listed on IDEAS
    14. Emmanuel Coffie, 2022. "Numerical Method for Highly Non-linear Mean-reverting Asset Price Model with CEV-type Process," Papers 2205.00634, arXiv.org.
    15. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    16. Lorenzo Torricelli, 2012. "Valuation of asset and volatility derivatives using decoupled time-changed L\'evy processes," Papers 1210.5479, arXiv.org, revised Jan 2015.
    17. Silva-Correa, María de los Ángeles & Martínez-Marca, José Luís & Venegas-Martínez, Francisco, 2016. "Impacto del mercado de derivados en la política monetaria: un modelo de volatilidad estocástica [Impact of the Derivatives Market on Monetary Policy: A Stochastic Volatility Model]," MPRA Paper 75705, University Library of Munich, Germany.
    18. Lorenzo Torricelli, 2012. "Pricing joint claims on an asset and its realized variance under stochastic volatility models," Papers 1206.2112, arXiv.org.
    19. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299, arXiv.org, revised Dec 2011.
    20. Masaaki Fukasawa, 2011. "Asymptotic analysis for stochastic volatility: martingale expansion," Finance and Stochastics, Springer, vol. 15(4), pages 635-654, December.
    21. Peter Carr & Jian Sun, 2007. "A new approach for option pricing under stochastic volatility," Review of Derivatives Research, Springer, vol. 10(2), pages 87-150, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:15:y:2012:i:07:n:s0219024912500471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.