IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v04y2001i04ns0219024901001140.html
   My bibliography  Save this article

Financial Signal Processing: A Self Calibrating Model

Author

Listed:
  • ROBERT J. ELLIOTT

    (Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1, Canada)

  • WILLIAM C. HUNTER

    (Federal Reserve Bank, 230 South LaSalle St., Chicago, Illinois 60604, USA)

  • BARBARA M. JAMIESON

    (Department of Finance and Management Science, University of Alberta, Edmonton, Alberta, Canada T6G 2G1, Canada)

Abstract

Previous work on multifactor term structure models has proposed that the short rate process is a function of some unobserved diffusion process. We consider a model in which the short rate process is a function of a Markov chain which represents the "state of the world". This enables us to obtain explicit expressions for the prices of zero-coupon bonds and other securities. Discretizing our model allows the use of signal processing techniques from Hidden Markov Models. This means we can estimate not only the unobserved Markov chain but also the parameters of the model, so the model is self-calibrating. The estimation procedure is tested on a selection of U.S. Treasury bills and bonds.

Suggested Citation

  • Robert J. Elliott & William C. Hunter & Barbara M. Jamieson, 2001. "Financial Signal Processing: A Self Calibrating Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 567-584.
  • Handle: RePEc:wsi:ijtafx:v:04:y:2001:i:04:n:s0219024901001140
    DOI: 10.1142/S0219024901001140
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024901001140
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024901001140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing Asian options with regime switching," Papers 1407.5091, arXiv.org.
    2. Christina Erlwein & Rogemar Mamon, 2009. "An online estimation scheme for a Hull–White model with HMM-driven parameters," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 87-107, March.
    3. Tian, Ping & Zhou, Hang & Zhou, Duotai, 2023. "Analysis about the Black-Scholes asset price under the regime-switching framework," International Review of Financial Analysis, Elsevier, vol. 88(C).
    4. Date, Paresh & Mamon, Rogemar & Tenyakov, Anton, 2013. "Filtering and forecasting commodity futures prices under an HMM framework," Energy Economics, Elsevier, vol. 40(C), pages 1001-1013.
    5. Robert Elliott & Tak Siu, 2010. "On risk minimizing portfolios under a Markovian regime-switching Black-Scholes economy," Annals of Operations Research, Springer, vol. 176(1), pages 271-291, April.
    6. Leunglung Chan & Song-Ping Zhu, 2021. "An Analytic Approach for Pricing American Options with Regime Switching," JRFM, MDPI, vol. 14(5), pages 1-20, April.
    7. Zbigniew Palmowski & {L}ukasz Stettner & Anna Sulima, 2018. "Optimal portfolio selection in an It\^o-Markov additive market," Papers 1806.03496, arXiv.org.
    8. Xiaojing Xi & Rogemar Mamon, 2014. "Capturing the Regime-Switching and Memory Properties of Interest Rates," Computational Economics, Springer;Society for Computational Economics, vol. 44(3), pages 307-337, October.
    9. Zbigniew Palmowski & Łukasz Stettner & Anna Sulima, 2019. "Optimal Portfolio Selection in an Itô–Markov Additive Market," Risks, MDPI, vol. 7(1), pages 1-32, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:04:y:2001:i:04:n:s0219024901001140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.