IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v27y2016i08ns0129183116500959.html
   My bibliography  Save this article

Computational fluid dynamics for modeling the turbulent natural convection in a double air-channel solar chimney system

Author

Listed:
  • I. Zavala-Guillén

    (Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP, Prol. Av. Palmira S/N. Col. Palmira, Cuernavaca, Morelos, CP 62490, México)

  • J. Xamán

    (Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP, Prol. Av. Palmira S/N. Col. Palmira, Cuernavaca, Morelos, CP 62490, México)

  • G. Álvarez

    (Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP, Prol. Av. Palmira S/N. Col. Palmira, Cuernavaca, Morelos, CP 62490, México)

  • J. Arce

    (Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP, Prol. Av. Palmira S/N. Col. Palmira, Cuernavaca, Morelos, CP 62490, México)

  • I. Hernández-Pérez

    (Centro Nacional de Investigación y Desarrollo Tecnológico CENIDET-TecNM-SEP, Prol. Av. Palmira S/N. Col. Palmira, Cuernavaca, Morelos, CP 62490, México)

  • M. Gijón-Rivera

    (Instituto Tecnológico y de Estudios Superiores de Monterrey, Mechanical Engineering Department, Vía Atlixcáyotl 2301, Reserva Territorial Atlixcáyotl Puebla, Puebla, CP 72453, México)

Abstract

This study reports the modeling of the turbulent natural convection in a double air-channel solar chimney (SC-DC) and its comparison with a single air-channel solar chimney (SC-C). Prediction of the mass flow and the thermal behavior of the SC-DC were obtained under three different climates of Mexico during one summer day. The climates correspond to: tropical savannah (Mérida), arid desert (Hermosillo) and temperate with warm summer (Mexico City). A code based on the Finite Volume Method was developed and a k−ω turbulence model has been used to model air turbulence in the solar chimney (SC). The code was validated against experimental data. The results indicate that during the day the SC-DC extracts about 50% more mass flow than the SC-C. When the SC-DC is located in Mérida, Hermosillo and Mexico City, the air-changes extracted along the day were 60, 63 and 52, respectively. The air temperature at the outlet of the chimney increased up to 33%, 38% and 61% with respect to the temperature it has at the inlet for Mérida, Hermosillo and Mexico City, respectively.

Suggested Citation

  • I. Zavala-Guillén & J. Xamán & G. Álvarez & J. Arce & I. Hernández-Pérez & M. Gijón-Rivera, 2016. "Computational fluid dynamics for modeling the turbulent natural convection in a double air-channel solar chimney system," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(08), pages 1-19, August.
  • Handle: RePEc:wsi:ijmpcx:v:27:y:2016:i:08:n:s0129183116500959
    DOI: 10.1142/S0129183116500959
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183116500959
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183116500959?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    2. Xamán, J. & Vargas-López, R. & Gijón-Rivera, M. & Zavala-Guillén, I. & Jiménez, M.J. & Arce, J., 2019. "Transient thermal analysis of a solar chimney for buildings with three different types of absorbing materials: Copper plate/PCM/concrete wall," Renewable Energy, Elsevier, vol. 136(C), pages 139-158.
    3. Zavala-Guillén, I. & Xamán, J. & Hernández-Pérez, I. & Hernández-Lopéz, I. & Gijón-Rivera, M. & Chávez, Y., 2018. "Numerical study of the optimum width of 2a diurnal double air-channel solar chimney," Energy, Elsevier, vol. 147(C), pages 403-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:27:y:2016:i:08:n:s0129183116500959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.