IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v22y2011i04ns0129183111016324.html
   My bibliography  Save this article

A Study Of A Quadruple Co-Evolutionary Model And Its Reciprocity Phase For Various Prisoner'S Dilemma Game

Author

Listed:
  • JUN TANIMOTO

    (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University Kasuga-Koen, Kasuga-Shi, Fukuoka 816-8580, Japan)

Abstract

We present and numerically investigate a quadruple co-evolutionary model for 2 × 2 Prisoner's Dilemma games which allows not only for agents to adopt strategy (Cooperation C or Defection D) and for network topology, but also for the probability of link rewiring that controls the speed of network evolution and the updating rule itself. The results of a series of simulations reveal that C agents in a coexisting phase increase their rewiring probability to avoid neighboring D agents' exploitation through the Game Exit Option. This evolutionary process leads most agents to adopt pairwise updating even though Imitation Max update adopted by all agents brings a higher payoff.

Suggested Citation

  • Jun Tanimoto, 2011. "A Study Of A Quadruple Co-Evolutionary Model And Its Reciprocity Phase For Various Prisoner'S Dilemma Game," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 401-417.
  • Handle: RePEc:wsi:ijmpcx:v:22:y:2011:i:04:n:s0129183111016324
    DOI: 10.1142/S0129183111016324
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183111016324
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183111016324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Lili & Zhang, Xingxing & Wang, Cheng, 2021. "Coevolution of spatial ultimatum game and link weight promotes fairness," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    2. Du, Jinming & Wu, Ziren, 2023. "Coevolutionary dynamics of strategy and network structure with publicity mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    3. Yang, Kai & Huang, Changwei & Dai, Qionglin & Yang, Junzhong, 2018. "The effects of attribute persistence on cooperation in evolutionary games," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 23-28.
    4. Liu, Yandi & Wang, Hexin & Ding, Yi & Yang, Xuan & Dai, Yu, 2022. "Can weak diversity help in propagating cooperation? Invasion of cooperators at the conformity-conflict boundary," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    5. Mao, Fubing & Ma, Lijia & He, Qiang & Xiao, Gaoxi, 2020. "Match making in complex social networks," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    6. Yang, Zhihu & Li, Zhi & Wang, Long, 2020. "Evolution of cooperation in a conformity-driven evolving dynamic social network," Applied Mathematics and Computation, Elsevier, vol. 379(C).
    7. Yang, Yimei & Sun, Hao & Xu, Genjiu, 2022. "Bilaterally-agree partner switching promotes cooperation in social dilemmas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    8. Wu, Jiadong & Zhao, Chengye, 2020. "Better immigration: Prisoner’s dilemma game with population change on dynamic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    9. Tanimoto, Jun, 2013. "Coevolutionary, coexisting learning and teaching agents model for prisoner’s dilemma games enhancing cooperation with assortative heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2955-2964.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:22:y:2011:i:04:n:s0129183111016324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.