IDEAS home Printed from https://ideas.repec.org/a/wsi/ijmpcx/v12y2001i07ns0129183101002292.html
   My bibliography  Save this article

A Symmetric High Order Method With Minimal Phase-Lag For The Numerical Solution Of The Schrödinger Equation

Author

Listed:
  • T. E. SIMOS

    (Section of Mathematics, Department of Civil Engineering, School of Engineering, Democritus University of Thrace, GR-671 00 Xanthi, Greece)

  • JESUS VIGO AGUIAR

    (Departamento de Matematica Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain)

Abstract

In this paper, a new high algebraic order symmetric eight-step method is introduced. For this method, a direct formula for the computation of the phase-lag is given. Based on this formula, an eight-step symmetric method with minimal phase-lag is developed. The new method has better stability properties than the classical one. Numerical illustrations on the radial Schrödinger equation indicate that the new method is more efficient than older ones.

Suggested Citation

  • T. E. Simos & Jesus Vigo Aguiar, 2001. "A Symmetric High Order Method With Minimal Phase-Lag For The Numerical Solution Of The Schrödinger Equation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(07), pages 1035-1042.
  • Handle: RePEc:wsi:ijmpcx:v:12:y:2001:i:07:n:s0129183101002292
    DOI: 10.1142/S0129183101002292
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0129183101002292
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0129183101002292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saleem Obaidat & Said Mesloub, 2019. "A New Explicit Four-Step Symmetric Method for Solving Schrödinger’s Equation," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    2. Changbum Chun & Beny Neta, 2019. "Trigonometrically-Fitted Methods: A Review," Mathematics, MDPI, vol. 7(12), pages 1-20, December.
    3. Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijmpcx:v:12:y:2001:i:07:n:s0129183101002292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijmpc/ijmpc.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.