IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i12p1197-d294883.html
   My bibliography  Save this article

Trigonometrically-Fitted Methods: A Review

Author

Listed:
  • Changbum Chun

    (Department of Mathematics, Sungkyunkwan University, Suwon 16419, Korea)

  • Beny Neta

    (Naval Postgraduate School, Department of Applied Mathematics, Monterey, CA 93943, USA)

Abstract

Numerical methods for the solution of ordinary differential equations are based on polynomial interpolation. In 1952, Brock and Murray have suggested exponentials for the case that the solution is known to be of exponential type. In 1961, Gautschi came up with the idea of using information on the frequency of a solution to modify linear multistep methods by allowing the coefficients to depend on the frequency. Thus the methods integrate exactly appropriate trigonometric polynomials. This was done for both first order systems and second order initial value problems. Gautschi concluded that “the error reduction is not very substantial unless” the frequency estimate is close enough. As a result, no other work was done in this direction until 1984 when Neta and Ford showed that “Nyström’s and Milne-Simpson’s type methods for systems of first order initial value problems are not sensitive to changes in frequency”. This opened the flood gates and since then there have been many papers on the subject.

Suggested Citation

  • Changbum Chun & Beny Neta, 2019. "Trigonometrically-Fitted Methods: A Review," Mathematics, MDPI, vol. 7(12), pages 1-20, December.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1197-:d:294883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/12/1197/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/12/1197/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franco, J.M. & Rández, L., 2016. "Explicit exponentially fitted two-step hybrid methods of high order for second-order oscillatory IVPs," Applied Mathematics and Computation, Elsevier, vol. 273(C), pages 493-505.
    2. T. E. Simos & Jesus Vigo Aguiar, 2001. "A Symmetric High Order Method With Minimal Phase-Lag For The Numerical Solution Of The Schrödinger Equation," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(07), pages 1035-1042.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Andrey V. Chukalin & Theodore E. Simos & Charalampos Tsitouras, 2021. "Eighth Order Two-Step Methods Trained to Perform Better on Keplerian-Type Orbits," Mathematics, MDPI, vol. 9(23), pages 1-19, November.
    2. Theodore E. Simos, 2024. "A New Methodology for the Development of Efficient Multistep Methods for First-Order IVPs with Oscillating Solutions," Mathematics, MDPI, vol. 12(4), pages 1-32, February.
    3. Singh, Gurjinder & Garg, Arvind & Kanwar, V. & Ramos, Higinio, 2019. "An efficient optimized adaptive step-size hybrid block method for integrating differential systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    4. Saleem Obaidat & Said Mesloub, 2019. "A New Explicit Four-Step Symmetric Method for Solving Schrödinger’s Equation," Mathematics, MDPI, vol. 7(11), pages 1-12, November.
    5. Obaid Alshammari & Sondess Ben Aoun & Mourad Kchaou & Theodore E. Simos & Charalampos Tsitouras & Houssem Jerbi, 2024. "Eighth-Order Numerov-Type Methods Using Varying Step Length," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    6. Vladislav N. Kovalnogov & Ruslan V. Fedorov & Tamara V. Karpukhina & Theodore E. Simos & Charalampos Tsitouras, 2021. "Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions," Mathematics, MDPI, vol. 9(21), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:12:p:1197-:d:294883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.