IDEAS home Printed from https://ideas.repec.org/a/wsi/ijfexx/v05y2018i02ns2424786318500159.html
   My bibliography  Save this article

Numerical pricing of European options with arbitrary payoffs

Author

Listed:
  • Ricardo Pachón

    (Credit Suisse, One Cabot Square, London, E14 4QJ, UK)

Abstract

In this paper we introduce the CHEB method, a quadrature-based methodology for the fast and accurate pricing of European options with arbitrary payoffs. The method comes as a natural application of Chebfun, a numerical computing software package built on the approximation properties of Chebyshev series and Chebyshev interpolants. For the methodology to be useful for practical purposes, we address two considerations: the recovery of the underlying’s density from the characteristic function, and the estimation of the truncation error. The methodology can be viewed as an extension of the COS method, a quadrature-based methodology designed for the pricing of standard, non-arbitrary payoffs.

Suggested Citation

  • Ricardo Pachón, 2018. "Numerical pricing of European options with arbitrary payoffs," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-31, June.
  • Handle: RePEc:wsi:ijfexx:v:05:y:2018:i:02:n:s2424786318500159
    DOI: 10.1142/S2424786318500159
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2424786318500159
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2424786318500159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    2. Stefan Macovschi & François Quittard-Pinon, 2006. "On the Pricing of Power and Other Polynomial Options," Post-Print hal-02313166, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Chun-Sung & O'Hara, John G. & Mataramvura, Sure, 2022. "Highly efficient Shannon wavelet-based pricing of power options under the double exponential jump framework with stochastic jump intensity and volatility," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    2. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
    3. Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
    4. Damir Filipovi'c & Martin Larsson, 2017. "Polynomial Jump-Diffusion Models," Papers 1711.08043, arXiv.org, revised Jul 2019.
    5. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    6. Bardgett, Chris & Gourier, Elise & Leippold, Markus, 2019. "Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets," Journal of Financial Economics, Elsevier, vol. 131(3), pages 593-618.
    7. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    8. Andrey Itkin, 2023. "The ATM implied skew in the ADO-Heston model," Papers 2309.15044, arXiv.org.
    9. Kirkby, J. Lars & Nguyen, Duy, 2021. "Equity-linked Guaranteed Minimum Death Benefits with dollar cost averaging," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 408-428.
    10. Liang Wang & Weixuan Xia, 2022. "Power‐type derivatives for rough volatility with jumps," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(7), pages 1369-1406, July.
    11. Eudald Romo & Luis Ortiz-Gracia, 2021. "SWIFT calibration of the Heston model," Papers 2103.01570, arXiv.org.
    12. Brignone, Riccardo & Gonzato, Luca & Lütkebohmert, Eva, 2023. "Efficient Quasi-Bayesian Estimation of Affine Option Pricing Models Using Risk-Neutral Cumulants," Journal of Banking & Finance, Elsevier, vol. 148(C).
    13. Adam Aleksander Majewski & Giacomo Bormetti & Fulvio Corsi, 2014. "Smile from the Past: A general option pricing framework with multiple volatility and leverage components," Papers 1404.3555, arXiv.org.
    14. Xie, Jiayi & Zhang, Zhimin, 2020. "Statistical estimation for some dividend problems under the compound Poisson risk model," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 101-115.
    15. Li, Zhe & Zhang, Weiguo & Zhang, Yue & Yi, Zhigao, 2019. "An analytical approximation approach for pricing European options in a two-price economy," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    16. Hanwen Zhang & Duy-Minh Dang, 2023. "A monotone numerical integration method for mean-variance portfolio optimization under jump-diffusion models," Papers 2309.05977, arXiv.org.
    17. Evgenii Vladimirov, 2023. "iCOS: Option-Implied COS Method," Papers 2309.00943, arXiv.org, revised Feb 2024.
    18. Carl Chiarella & Boda Kang & Gunter H. Meyer, 2010. "The Evaluation Of Barrier Option Prices Under Stochastic Volatility," Research Paper Series 266, Quantitative Finance Research Centre, University of Technology, Sydney.
    19. Rong Du & Duy-Minh Dang, 2023. "Fourier Neural Network Approximation of Transition Densities in Finance," Papers 2309.03966, arXiv.org, revised Sep 2024.
    20. João Pedro Vidal Nunes & Tiago Ramalho Viegas Alcaria, 2016. "Valuation of forward start options under affine jump-diffusion models," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 727-747, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijfexx:v:05:y:2018:i:02:n:s2424786318500159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscientific.com/worldscinet/ijfe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.