IDEAS home Printed from https://ideas.repec.org/a/wsi/fracta/v29y2021i01ns0218348x21500171.html
   My bibliography  Save this article

A Fractal Model For Capillary Flow Through A Single Tortuous Capillary With Roughened Surfaces In Fibrous Porous Media

Author

Listed:
  • BOQI XIAO

    (School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China)

  • QIWEN HUANG

    (School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China)

  • HANXIN CHEN

    (School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China)

  • XUBING CHEN

    (School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China)

  • GONGBO LONG

    (School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China)

Abstract

In this paper, a fractal model for capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media is derived. The determined imbibition height and imbibition mass of capillary rise are in satisfying agreement with the existing models reported in the literature. It is found that the imbibition height and imbibition mass of capillary decreases with increasing relative roughness. Besides, it is observed that the equilibrium time in a single tortuous capillary with roughened surfaces decreases with an increase in relative roughness. In addition, it is seen that the imbibition height and imbibition mass of capillary rise increases with imbibition time. With the proposed fractal model, the physical mechanisms of capillary flow through a single tortuous capillary with roughened surfaces in fibrous porous media are better elucidated. One advantage of our fractal analytical model is that it contains no empirical constant, which is usually required in previous models.

Suggested Citation

  • Boqi Xiao & Qiwen Huang & Hanxin Chen & Xubing Chen & Gongbo Long, 2021. "A Fractal Model For Capillary Flow Through A Single Tortuous Capillary With Roughened Surfaces In Fibrous Porous Media," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 29(01), pages 1-10, February.
  • Handle: RePEc:wsi:fracta:v:29:y:2021:i:01:n:s0218348x21500171
    DOI: 10.1142/S0218348X21500171
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0218348X21500171
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0218348X21500171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Gang & Zheng, Hualin & Zhang, Caizhi & Chen, Huicui & Chin, Cheng Siong & Xu, Xinhai, 2024. "Analyzing and modeling of CO purging for high-temperature proton exchange membrane fuel cells," Energy, Elsevier, vol. 302(C).
    2. Gongbo Long & Yingjie Liu & Wanrong Xu & Peng Zhou & Jiaqi Zhou & Guanshui Xu & Boqi Xiao, 2022. "Analysis of Crack Problems in Multilayered Elastic Medium by a Consecutive Stiffness Method," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    3. Zou, Xiaojing & He, Changyu & Guan, Wei & Zhou, Yan & Zhao, Hongyang & Cai, Mingyu, 2023. "Reservoir tortuosity prediction: Coupling stochastic generation of porous media and machine learning," Energy, Elsevier, vol. 285(C).
    4. Lei Lan & Jiaqi Zhou & Wanrong Xu & Gongbo Long & Boqi Xiao & Guanshui Xu, 2023. "A Boundary-Element Analysis of Crack Problems in Multilayered Elastic Media: A Review," Mathematics, MDPI, vol. 11(19), pages 1-24, September.
    5. Yang, Shanshan & Wang, Mengying & Zou, Mingqing & Sheng, Qiong & Cui, Ruike & Chen, Shuaiyin, 2023. "Gas transport law in inorganic nanopores considering the influence of cross section shape and roughness," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:fracta:v:29:y:2021:i:01:n:s0218348x21500171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: https://www.worldscientific.com/worldscinet/fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.