IDEAS home Printed from https://ideas.repec.org/a/wsi/ccexxx/v06y2015i02ns2010007815500098.html
   My bibliography  Save this article

Fat-Tailed Uncertainty, Learning, And Climate Policy

Author

Listed:
  • JOHN E. BISTLINE

    (Electric Power Research Institute, 3420 Hillview Ave, Palo Alto, CA 94304, USA;
    Steyer-Taylor Center for Energy Policy and Finance, Stanford University, Stanford, CA 94305, USA)

Abstract

Low-probability, high-impact risks are critical features of climate change economics; however, there are many unanswered policy and modeling questions about the implications of fat-tailed uncertainty. This paper examines the impact of fat-tailed uncertainty about the climate sensitivity on abatement decisions using a sequential decision-making framework. The results demonstrate how policy prescriptions from integrated assessment models are sensitive to the specifications of uncertainty, learning, and damages. Fat tails alone do not merit immediate and stringent mitigation but require strongly convex damages and slow learning. The analysis illustrates the potential value of midcourse corrections on reducing consumption risks imposed by uncertain damages from climate change and focuses attention on the dynamics of learning.

Suggested Citation

  • John E. Bistline, 2015. "Fat-Tailed Uncertainty, Learning, And Climate Policy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 1-21.
  • Handle: RePEc:wsi:ccexxx:v:06:y:2015:i:02:n:s2010007815500098
    DOI: 10.1142/S2010007815500098
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S2010007815500098
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S2010007815500098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gary W. Yohe & Richard S.J. Tol, 2007. "Precaution And A Dismal Theorem: Implications For Climate Policy And Climate Research," Working Papers FNU-145, Research unit Sustainability and Global Change, Hamburg University, revised Aug 2007.
    2. Freeman, Mark C. & Wagner, Gernot & Zeckhauser, Richard J., 2015. "Climate Sensitivity Uncertainty: When Is Good News Bad?," Working Paper Series rwp15-002, Harvard University, John F. Kennedy School of Government.
    3. Howard Kunreuther & Geoffrey Heal & Myles Allen & Ottmar Edenhofer & Christopher B. Field & Gary Yohe, 2013. "Risk management and climate change," Nature Climate Change, Nature, vol. 3(5), pages 447-450, May.
    4. William D. Nordhaus, 2009. "An Analysis of the Dismal Theorem," Levine's Working Paper Archive 814577000000000116, David K. Levine.
    5. Kousky, Carolyn & Rostapshova, Olga & Toman, Michael & Zeckhauser, Richard, 2009. "Responding to Threats of Climate Change Mega-Catastrophes," RFF Working Paper Series dp-09-45, Resources for the Future.
    6. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert J. R. Elliott & Ingmar Schumacher & Cees Withagen, 2020. "Suggestions for a Covid-19 Post-Pandemic Research Agenda in Environmental Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 1187-1213, August.
    2. David Anthoff & Richard S. J. Tol, 2022. "Testing the Dismal Theorem," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 885-920.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hennlock, Magnus, 2009. "Robust Control in Global Warming Management: An Analytical Dynamic Integrated Assessment," RFF Working Paper Series dp-09-19, Resources for the Future.
    2. Hennlock, Magnus, 2009. "Robust Control in Global Warming Management: An Analytical Dynamic Integrated Assessment," Working Papers in Economics 354, University of Gothenburg, Department of Economics.
    3. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    4. Dellink, Rob & Finus, Michael, 2012. "Uncertainty and climate treaties: Does ignorance pay?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 565-584.
    5. David Anthoff & Richard Tol, 2009. "The Impact of Climate Change on the Balanced Growth Equivalent: An Application of FUND," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 351-367, July.
    6. Toman Michael, 2014. "The need for multiple types of information to inform climate change assessment," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 469-485, December.
    7. Ian W. R. Martin & Robert S. Pindyck, 2015. "Averting Catastrophes: The Strange Economics of Scylla and Charybdis," American Economic Review, American Economic Association, vol. 105(10), pages 2947-2985, October.
    8. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Post-Print hal-03027150, HAL.
    9. Christian Traeger, 2014. "Why uncertainty matters: discounting under intertemporal risk aversion and ambiguity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 56(3), pages 627-664, August.
    10. Hassler, J. & Krusell, P. & Smith, A.A., 2016. "Environmental Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 1893-2008, Elsevier.
    11. Dittrich, Ruth & Wreford, Anita & Moran, Dominic, 2016. "A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward?," Ecological Economics, Elsevier, vol. 122(C), pages 79-89.
    12. Dietz, Simon, 2011. "High impact, low probability?: an empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 38586, London School of Economics and Political Science, LSE Library.
    13. Christian Walter, 2020. "Sustainable Financial Risk Modelling Fitting the SDGs: Some Reflections," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    14. Christian L. E. Franzke, 2017. "Impacts of a Changing Climate on Economic Damages and Insurance," Economics of Disasters and Climate Change, Springer, vol. 1(1), pages 95-110, June.
    15. Stergios Athanassoglou & Anastasios Xepapadeas, 2011. "Pollution Control: When, and How, to be Precautious," Working Papers 2011.18, Fondazione Eni Enrico Mattei.
    16. Yiyong Cai & Warwick McKibbin, 2015. "Uncertainty and International Climate Change Negotiations," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 1(1), pages 101-115, March.
    17. Baum, Seth D., 2009. "Description, prescription and the choice of discount rates," Ecological Economics, Elsevier, vol. 69(1), pages 197-205, November.
    18. Dietz, Simon, 2009. "High impact, low probability? An empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 37612, London School of Economics and Political Science, LSE Library.
    19. Toshio Fujimi & Masahide Watanabe & Hirokazu Tatano, 2021. "Public trust, perceived accuracy, perceived likelihood, and concern on multi-model climate projections communicated with different formats," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(5), pages 1-20, June.
    20. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ccexxx:v:06:y:2015:i:02:n:s2010007815500098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/cce/cce.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.