IDEAS home Printed from https://ideas.repec.org/a/wsi/afexxx/v12y2017i01ns201049521750004x.html
   My bibliography  Save this article

Statistical Arbitrage In The Multi-Asset Black–Scholes Economy

Author

Listed:
  • AHMET GÖNCÜ

    (Institute of Quantitative Finance, Xian Jiaotong Liverpool University, Suzhou, China)

  • ERDINC AKYILDIRIM

    (Department of Banking and Finance, Akdeniz University, Antalya, Turkey)

Abstract

In this study, we consider the statistical arbitrage definition given in Hogan, S, R Jarrow, M Teo and M Warachka (2004). Testing market efficiency using statistical arbitrage with applications to momentum and value strategies, Journal of Financial Economics, 73, 525–565 and derive the statistical arbitrage condition in the multi-asset Black–Scholes economy building upon the single asset case studied in Göncü, A (2015). Statistical arbitrage in the Black Scholes framework. Quantitative Finance, 15(9), 1489–1499. Statistical arbitrage profits can be generated if there exists at least one asset in the economy that satisfies the statistical arbitrage condition. Therefore, adding a no-statistical arbitrage condition to no-arbitrage pricing models is not realistic if not feasible. However, with an example we show that what excludes statistical arbitrage opportunities in the Black–Scholes economy, and possibly in other complete market models, is the presence of uncertainty or stochasticity in the model parameters. Furthermore, we derive analytical formulas for the expected value and probability of loss of the statistical arbitrage portfolios and compute optimal boundaries to sell the risky assets in the portfolio by maximizing the expected return with a constraint on the probability of loss.

Suggested Citation

  • Ahmet Göncü & Erdinc Akyildirim, 2017. "Statistical Arbitrage In The Multi-Asset Black–Scholes Economy," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-18, March.
  • Handle: RePEc:wsi:afexxx:v:12:y:2017:i:01:n:s201049521750004x
    DOI: 10.1142/S201049521750004X
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S201049521750004X
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S201049521750004X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fama, Eugene F., 1998. "Market efficiency, long-term returns, and behavioral finance," Journal of Financial Economics, Elsevier, vol. 49(3), pages 283-306, September.
    2. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    3. Robert Elliott & John Van Der Hoek & William Malcolm, 2005. "Pairs trading," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 271-276.
    4. Handa, Puneet & Schwartz, Robert A, 1996. "Limit Order Trading," Journal of Finance, American Finance Association, vol. 51(5), pages 1835-1861, December.
    5. Hogan, Steve & Jarrow, Robert & Teo, Melvyn & Warachka, Mitch, 2004. "Testing market efficiency using statistical arbitrage with applications to momentum and value strategies," Journal of Financial Economics, Elsevier, vol. 73(3), pages 525-565, September.
    6. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    7. Oleg Bondarenko, 2003. "Statistical Arbitrage and Securities Prices," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 875-919, July.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmet G�nc�, 2015. "Statistical arbitrage in the Black-Scholes framework," Quantitative Finance, Taylor & Francis Journals, vol. 15(9), pages 1489-1499, September.
    2. Marianna Brunetti & Roberta De Luca, 2023. "Pairs trading in the index options market," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 13(1), pages 145-173, March.
    3. Focardi, Sergio M. & Fabozzi, Frank J. & Mitov, Ivan K., 2016. "A new approach to statistical arbitrage: Strategies based on dynamic factor models of prices and their performance," Journal of Banking & Finance, Elsevier, vol. 65(C), pages 134-155.
    4. Guglielmo Maria Caporale & Luis Gil-Alana & Alex Plastun, 2017. "Searching for Inefficiencies in Exchange Rate Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 405-432, March.
    5. Emmanouil Mavrakis & Christos Alexakis, 2018. "Statistical Arbitrage Strategies under Different Market Conditions: The Case of the Greek Banking Sector," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(2), pages 159-185, August.
    6. Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2023. "Statistical arbitrage: factor investing approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1295-1331, December.
    7. David S. Sun & Shih-Chuan Tsai & Wei Wang, 2013. "Behavioral Investment Strategy Matters: A Statistical Arbitrage Approach," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 49(S3), pages 47-61, July.
    8. Christian Rein & Ludger Rüschendorf & Thorsten Schmidt, 2021. "Generalized statistical arbitrage concepts and related gain strategies," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 563-594, April.
    9. Carmen López-Martín & Sonia Benito Muela & Raquel Arguedas, 2021. "Efficiency in cryptocurrency markets: new evidence," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 403-431, September.
    10. Ahmet Göncü & Erdinc Akyildirim, 2016. "A stochastic model for commodity pairs trading," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1843-1857, December.
    11. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    12. Anna Ananova & Rama Cont & Renyuan Xu, 2020. "Model-free Analysis of Dynamic Trading Strategies," Papers 2011.02870, arXiv.org, revised Aug 2023.
    13. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    14. Tim Leung & Xin Li, 2015. "Optimal Mean Reversion Trading With Transaction Costs And Stop-Loss Exit," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-31.
    15. Yerkin Kitapbayev & Tim Leung, 2018. "Mean Reversion Trading With Sequential Deadlines And Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(01), pages 1-22, February.
    16. Brandouy, Olivier & Delahaye, Jean-Paul & Ma, Lin & Zenil, Hector, 2014. "Algorithmic complexity of financial motions," Research in International Business and Finance, Elsevier, vol. 30(C), pages 336-347.
    17. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.
    18. Marcin Wojtowicz, 2014. "Capital Structure Arbitrage revisited," Tinbergen Institute Discussion Papers 14-137/IV/DSF81, Tinbergen Institute.
    19. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    20. Wang, Xi & Bao, Si & Chen, Jingchao, 2017. "High-frequency stock linkage and multi-dimensional stationary processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 70-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:afexxx:v:12:y:2017:i:01:n:s201049521750004x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/afe/afe.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.