User Equilibrium Route Assignment For Microscopic Pedestrian Simulation
Author
Abstract
Suggested Citation
DOI: 10.1142/S0219525914500106
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jianghua Zhang & Yang Liu & Yingxue Zhao & Tianhu Deng, 2020. "Emergency evacuation problem for a multi-source and multi-destination transportation network: mathematical model and case study," Annals of Operations Research, Springer, vol. 291(1), pages 1153-1181, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
- Xiao, Yao & Yang, Mofeng & Zhu, Zheng & Yang, Hai & Zhang, Lei & Ghader, Sepehr, 2021. "Modeling indoor-level non-pharmaceutical interventions during the COVID-19 pandemic: A pedestrian dynamics-based microscopic simulation approach," Transport Policy, Elsevier, vol. 109(C), pages 12-23.
- Shang, Pan & Li, Ruimin & Guo, Jifu & Xian, Kai & Zhou, Xuesong, 2019. "Integrating Lagrangian and Eulerian observations for passenger flow state estimation in an urban rail transit network: A space-time-state hyper network-based assignment approach," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 135-167.
- Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
- Chang, Kuo-Hao & Wu, Ying-Zheng & Su, Wen-Ray & Lin, Lee-Yaw, 2024. "A simulation evacuation framework for effective disaster preparedness strategies and response decision making," European Journal of Operational Research, Elsevier, vol. 313(2), pages 733-746.
- Ji, Xiangfeng & Zhang, Jian & Hu, Yongkai & Ran, Bin, 2016. "Pedestrian movement analysis in transfer station corridor: Velocity-based and acceleration-based," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 416-434.
More about this item
Keywords
Dynamic assignment; pedestrians; microsimulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:17:y:2014:i:02:n:s0219525914500106. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.