IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v11y2008i04ns0219525908001829.html
   My bibliography  Save this article

Collective Behavior Of El Farol Attendees

Author

Listed:
  • CANAN ATILGAN

    (School of Engineering and Natural Sciences, Sabanci University, Tuzla 34956 Istanbul, Turkey)

  • ALI RANA ATILGAN

    (School of Engineering and Natural Sciences, Sabanci University, Tuzla 34956 Istanbul, Turkey)

  • GÜVEN DEMIREL

    (Department of Industrial Engineering, Bogazici University, Bebek 34342, Istanbul, Turkey)

Abstract

Arthur's paradigm of the El Farol bar for modeling bounded rationality and inductive behavior is employed. Manipulating the memory horizon available to the agents and the selection criteria they utilize for prediction algorithms, one can maneuver the mean attendance away from the externally provided threshold. We observe that a transition occurs in the attendance distribution at a critical memory, beyond which a larger part of the crowd becomes more comfortable. Agents' confidence in their algorithms and the delayed feedback of attendance data increase the overall collectivity of the system behavior. It is possible to manipulate the time evolution of the attendance either externally, by providing past data with delay, or internally, if agents postpone algorithm modification upon failure.

Suggested Citation

  • Canan Atilgan & Ali Rana Atilgan & Güven Demirel, 2008. "Collective Behavior Of El Farol Attendees," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 629-639.
  • Handle: RePEc:wsi:acsxxx:v:11:y:2008:i:04:n:s0219525908001829
    DOI: 10.1142/S0219525908001829
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525908001829
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525908001829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu-Heng Chen & Umberto Gostoli, 2017. "Coordination in the El Farol Bar problem: The role of social preferences and social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(1), pages 59-93, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Popoyan, Lilit & Napoletano, Mauro & Roventini, Andrea, 2017. "Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 117-140.
    2. Kubin, Ingrid & Zörner, Thomas O. & Gardini, Laura & Commendatore, Pasquale, 2019. "A credit cycle model with market sentiments," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 159-174.
    3. Klaus Jaffe, 2015. "Agent based simulations visualize Adam Smith's invisible hand by solving Friedrich Hayek's Economic Calculus," Papers 1509.04264, arXiv.org, revised Nov 2015.
    4. repec:hal:spmain:info:hdl:2441/5bnglqth5987gaq6dhju3psjn3 is not listed on IDEAS
    5. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    6. Cincotti, Silvano & Raberto, Marco & Teglio, Andrea, 2010. "Credit money and macroeconomic instability in the agent-based model and simulator Eurace," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 4, pages 1-32.
    7. Paul L. Borrill & Leigh Tesfatsion, 2011. "Agent-based Modeling: The Right Mathematics for the Social Sciences?," Chapters, in: John B. Davis & D. Wade Hands (ed.), The Elgar Companion to Recent Economic Methodology, chapter 11, Edward Elgar Publishing.
    8. Liu, Beibei & He, Pan & Zhang, Bing & Bi, Jun, 2012. "Impacts of alternative allowance allocation methods under a cap-and-trade program in power sector," Energy Policy, Elsevier, vol. 47(C), pages 405-415.
    9. Rich, Karl M. & Ross, R. Brent & Baker, A. Derek & Negassa, Asfaw, 2011. "Quantifying value chain analysis in the context of livestock systems in developing countries," Food Policy, Elsevier, vol. 36(2), pages 214-222, April.
    10. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    11. V. Alfi & L. Pietronero & A. Zaccaria, 2008. "Minimal Agent Based Model For The Origin And Self-Organization Of Stylized Facts In Financial Markets," Papers 0807.1888, arXiv.org.
    12. Yoo, Seung Han, 2014. "Learning a population distribution," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 188-201.
    13. Matteo Coronese & Davide Luzzati, 2022. "Economic impacts of natural hazards and complexity science: a critical review," LEM Papers Series 2022/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Cees Diks & Cars Hommes & Valentyn Panchenko & Roy Weide, 2008. "E&F Chaos: A User Friendly Software Package for Nonlinear Economic Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 32(1), pages 221-244, September.
    15. Qingxu Huang & Dawn C Parker & Tatiana Filatova & Shipeng Sun, 2014. "A Review of Urban Residential Choice Models Using Agent-Based Modeling," Environment and Planning B, , vol. 41(4), pages 661-689, August.
    16. Serena Brianzoni & Roy Cerqueti & Elisabetta Michetti, 2010. "A Dynamic Stochastic Model of Asset Pricing with Heterogeneous Beliefs," Computational Economics, Springer;Society for Computational Economics, vol. 35(2), pages 165-188, February.
    17. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    18. Ashraf, Quamrul & Gershman, Boris & Howitt, Peter, 2017. "Banks, market organization, and macroeconomic performance: An agent-based computational analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 135(C), pages 143-180.
    19. Luca Riccetti & Alberto Russo & Mauro Gallegati, 2015. "An agent based decentralized matching macroeconomic model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 305-332, October.
    20. Sjur Didrik Flåm, 2013. "Reaching Market Equilibrium Merely by Bilateral Barters," CESifo Working Paper Series 4504, CESifo.
    21. Theodore Tsekeris & Klimis Vogiatzoglou, 2011. "Spatial agent-based modeling of household and firm location with endogenous transport costs," Netnomics, Springer, vol. 12(2), pages 77-98, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:11:y:2008:i:04:n:s0219525908001829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.