IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v9y2006i3p241-258.html
   My bibliography  Save this article

Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input–output model

Author

Listed:
  • Chenyang Lian
  • Yacov Y. Haimes

Abstract

This paper discusses the Dynamic Input–Output Inoperability Model (DIIM), which is an extension to the static Inoperability Input–Output Model (IIM). Based on Wassily Leontief's Input–Output (I–O) model, both the IIM and the DIIM analyze how the system of interdependent sectors can be adversely affected as a result of initial perturbations to other sectors through willful attacks or natural disasters. To model the industry/sector interdependencies, the DIIM uses the national and regional commodity‐transaction data from the Bureau of Economic Analysis (BEA) and the Regional Input–Output Multiplier System (RIMS II). In contrast to most traditional dynamic I–O models, the DIIM introduces industry resilience coefficients to measure the efficacy of sectors' risk management options. The DIIM also incorporates the stochastic properties of a recovery through the Brownian motion, representing short‐term uncertainties. The paper uses two metrics to assess the consequences to the economic sectors of attacks. The DIIM methodology is demonstrated in detail through a two‐by‐two economy system. This is followed by an analysis of a terrorist attack scenario, using the DIIM and the BEA/RIMS II commodity‐flow data of the 59 sectors in Virginia. © 2006 Wiley Periodicals, Inc. Syst Eng 9: 241–258, 2006. DOI 10.1002/sys.20051

Suggested Citation

  • Chenyang Lian & Yacov Y. Haimes, 2006. "Managing the risk of terrorism to interdependent infrastructure systems through the dynamic inoperability input–output model," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 241-258, September.
  • Handle: RePEc:wly:syseng:v:9:y:2006:i:3:p:241-258
    DOI: 10.1002/sys.20051
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.20051
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.20051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leontief, Wassily & Duchin, Faye, 1986. "The Future Impact of Automation on Workers," OUP Catalogue, Oxford University Press, number 9780195036237.
    2. George E. Apostolakis & Douglas M. Lemon, 2005. "A Screening Methodology for the Identification and Ranking of Infrastructure Vulnerabilities Due to Terrorism," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 361-376, April.
    3. Adam Rose, 2004. "Economic Principles, Issues, and Research Priorities in Hazard Loss Estimation," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 2, pages 13-36, Springer.
    4. Kenneth G. Crowther & Yacov Y. Haimes, 2005. "Application of the inoperability input—output model (IIM) for systemic risk assessment and management of interdependent infrastructures," Systems Engineering, John Wiley & Sons, vol. 8(4), pages 323-341.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pradeep V. Mandapaka & Edmond Y. M. Lo, 2023. "Assessing Shock Propagation and Cascading Uncertainties Using the Input–Output Framework: Analysis of an Oil Refinery Accident in Singapore," Sustainability, MDPI, vol. 15(2), pages 1-24, January.
    2. Kenneth G. Crowther & Yacov Y. Haimes, 2010. "Development of the multiregional inoperability input‐output model (MRIIM) for spatial explicitness in preparedness of interdependent regions," Systems Engineering, John Wiley & Sons, vol. 13(1), pages 28-46, March.
    3. Feiyi Luo & Zhengfeng Huang & Pengjun Zheng, 2022. "A Study on the Decay Model of Multi-Block Taxi Travel Demand under the Influence of Major Urban Public Health Events," IJERPH, MDPI, vol. 19(6), pages 1-19, March.
    4. Jian Jin & Haoran Zhou, 2023. "A Demand-Side Inoperability Input–Output Model for Strategic Risk Management: Insight from the COVID-19 Outbreak in Shanghai, China," Sustainability, MDPI, vol. 15(5), pages 1-22, February.
    5. Shanshan Ye & Mingming Cao, 2023. "The Impact of Industrial Linkage Structures on Urban Economic Resilience in China in the Context of the COVID-19 Shock," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    6. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Hairui Wei & Ming Dong & Shuyu Sun, 2010. "Inoperability input‐output modeling (IIM) of disruptions to supply chain networks," Systems Engineering, John Wiley & Sons, vol. 13(4), pages 324-339, December.
    8. Cottafava, Dario & Gastaldo, Michele & Quatraro, Francesco & Santhiá, Cristina, 2022. "Modeling economic losses and greenhouse gas emissions reduction during the COVID-19 pandemic: Past, present, and future scenarios for Italy," Economic Modelling, Elsevier, vol. 110(C).
    9. Jalal Ali & Joost R. Santos, 2015. "Modeling the Ripple Effects of IT‐Based Incidents on Interdependent Economic Systems," Systems Engineering, John Wiley & Sons, vol. 18(2), pages 146-161, March.
    10. Hiroyuki Shibusawa & Daichi Matsushima, 2022. "Assessing the economic impact of tsunami and nuclear power plant disasters in Shizuoka, Japan: a dynamic inter-regional input–output (IRIO) approach," Asia-Pacific Journal of Regional Science, Springer, vol. 6(1), pages 307-333, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joost R. Santos, 2006. "Inoperability input‐output modeling of disruptions to interdependent economic systems," Systems Engineering, John Wiley & Sons, vol. 9(1), pages 20-34, March.
    2. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    3. Muhammad Abdullah Khalid & Yousaf Ali, 2020. "Economic impact assessment of natural disaster with multi-criteria decision making for interdependent infrastructures," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7287-7311, December.
    4. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    5. Paul Raschky, 2007. "Estimating the effects of risk transfer mechanisms against floods in Europe and U.S.A.: A dynamic panel approach," Working Papers 2007-05, Faculty of Economics and Statistics, Universität Innsbruck.
    6. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    7. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    8. Aaron B. Gertz & James B. Davies & Samantha L. Black, 2019. "A CGE Framework for Modeling the Economics of Flooding and Recovery in a Major Urban Area," Risk Analysis, John Wiley & Sons, vol. 39(6), pages 1314-1341, June.
    9. Tobias Maier & Anke M�nnig & Gerd Zika, 2015. "Labour Demand In Germany By Industrial Sector, Occupational Field And Qualification Until 2025 - Model Calculations Using The Iab/Inforge Model," Economic Systems Research, Taylor & Francis Journals, vol. 27(1), pages 19-42, March.
    10. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    11. María José Ibarrola-Rivas & Thomas Kastner & Sanderine Nonhebel, 2016. "How Much Time Does a Farmer Spend to Produce My food? An International Comparison of the Impact of Diets and Mechanization," Resources, MDPI, vol. 5(4), pages 1-13, December.
    12. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    13. Stéphane Hallegatte, 2014. "Modeling the Role of Inventories and Heterogeneity in the Assessment of the Economic Costs of Natural Disasters," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 152-167, January.
    14. Jahn, Malte, 2013. "Economics of extreme weather events in cities: Terminology and regional impact models," HWWI Research Papers 143, Hamburg Institute of International Economics (HWWI).
    15. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    16. Yasuhide Okuyama & Michael Sonis & Geoffrey Hewings, 2006. "Typology of structural change in a regional economy: a temporal inverse analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 133-153.
    17. Michael Greenberg, 2012. "Our Deteriorating Physical Structures and Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2008-2009, December.
    18. Duchin, Faye & Lange, Glenn-Marie, 1995. "The choice of technology and associated changes in prices in the U.S. economy," Structural Change and Economic Dynamics, Elsevier, vol. 6(3), pages 335-357, August.
    19. Iman Rahimi Aloughareh & Mohsen Ghafory Ashtiany & Kiarash Nasserasadi, 2016. "An Integrated Methodology For Regional Macroeconomic Loss Estimation Of Earthquake: A Case Study Of Tehran," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 61(04), pages 1-24, September.
    20. Irfan Ahmed & Claudio Socci & Rosita Pretaroli & Francesca Severini & Stefano Deriu, 2022. "Socioeconomic spillovers of the 2016–2017 Italian earthquakes: a bi-regional inoperability model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 426-453, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:9:y:2006:i:3:p:241-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.