IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v24y2021i2p100-121.html
   My bibliography  Save this article

A graph theory approach to predicting functional failure propagation during conceptual systems design

Author

Listed:
  • Bryan M. O'Halloran
  • Nikolaos Papakonstantinou
  • Kristin Giammarco
  • Douglas L. Van Bossuyt

Abstract

An open area of research for complex, cyber‐physical systems is how to adequately support decision making using reliability and failure data early in the systems engineering process. Having meaningful reliability and failure data available early offers information to decision makers at a point in the design process where decisions have a high impact to cost ratio. When applied to conceptual system design, widely used methods such as probabilistic risk analysis (PRA) and failure modes effects and criticality analysis (FMECA) are limited by the availability of data and often rely on detailed representations of the system. Further, existing methods for system reliability and failure methods have not addressed failure propagation in conceptual system design prior to selecting candidate architectures. Consideration given to failure propagation primarily focuses on the basic representation where failures propagate forward. In order to address the shortcomings of existing reliability and failure methods, this paper presents the function failure propagation potential methodology (FFPPM) to formalize the types of failure propagation and quantify failure propagation potential for complex, cyber‐physical systems during the conceptual stage of system design. Graph theory is leveraged to model and quantify the connectedness of the functional block diagram (FBD) to develop the metrics used in FFPPM. The FFPPM metrics include (i) the summation of the reachability matrix, (ii) the summation of the number of paths between nodes (i.e., functions) i and j for all i and j, and (iii) the degree and degree distribution. In plain English, these metrics quantify the reachability between functions in the graph, the number of paths between functions, and the connectedness of each node. The FFPPM metrics can then be used to make candidate architecture selection decisions and be used as early indicators for risk. The unique contribution of this research is to quantify failure propagation potential during conceptual system design of complex, cyber‐physical systems prior to selecting candidate architectures. FFPPM has been demonstrated using the example of an emergency core cooling system (ECCS) system in a pressurized water reactor (PWR).

Suggested Citation

  • Bryan M. O'Halloran & Nikolaos Papakonstantinou & Kristin Giammarco & Douglas L. Van Bossuyt, 2021. "A graph theory approach to predicting functional failure propagation during conceptual systems design," Systems Engineering, John Wiley & Sons, vol. 24(2), pages 100-121, March.
  • Handle: RePEc:wly:syseng:v:24:y:2021:i:2:p:100-121
    DOI: 10.1002/sys.21569
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21569
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jensen U., 2002. "Probabilistic Risk Analysis: Foundations and Methods," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 925-925, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Yazdi, 2019. "A review paper to examine the validity of Bayesian network to build rational consensus in subjective probabilistic failure analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(1), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:24:y:2021:i:2:p:100-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.