IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v21y2018i4p285-294.html
   My bibliography  Save this article

Harnessing expert knowledge: Defining a Bayesian network decision model with limited data–Model structure for the vibration qualification problem

Author

Listed:
  • Davinia B. Rizzo
  • Mark R. Blackburn

Abstract

As systems become more complex, systems engineers rely on experts to inform decisions. There are few experts and limited data in many complex new technologies. This challenges systems engineers as they strive to plan activities such as qualification in an environment where technical constraints are coupled with the traditional cost, risk, and schedule constraints. Bayesian network (BN) models provide a framework to aid systems engineers in planning qualification efforts with complex constraints by harnessing expert knowledge and incorporating technical factors. By quantifying causal factors, a BN model can provide data about the risk of implementing a decision supplemented with information on driving factors. This allows a systems engineer to make informed decisions and examine “what‐if” scenarios. This paper discusses a novel process developed to define a BN model structure based primarily on expert knowledge supplemented with extremely limited data (25 data sets or less). The model was developed to aid qualification decisions—specifically to predict the suitability of six degrees of freedom (6DOF) vibration testing for qualification. The process defined the model structure with expert knowledge in an unbiased manner. Validation during the process execution and of the model provided evidence the process may be an effective tool in harnessing expert knowledge for a BN model.

Suggested Citation

  • Davinia B. Rizzo & Mark R. Blackburn, 2018. "Harnessing expert knowledge: Defining a Bayesian network decision model with limited data–Model structure for the vibration qualification problem," Systems Engineering, John Wiley & Sons, vol. 21(4), pages 285-294, July.
  • Handle: RePEc:wly:syseng:v:21:y:2018:i:4:p:285-294
    DOI: 10.1002/sys.21431
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21431
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lianfa Li & Jinfeng Wang & Hareton Leung & Chengsheng Jiang, 2010. "Assessment of Catastrophic Risk Using Bayesian Network Constructed from Domain Knowledge and Spatial Data," Risk Analysis, John Wiley & Sons, vol. 30(7), pages 1157-1175, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruiling Sun & Zaiwu Gong & Weiwei Guo & Ashfaq Ahmad Shah & Jie Wu & Haiying Xu, 2022. "Flood disaster risk assessment of and countermeasures toward Yangtze River Delta by considering index interaction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 475-500, May.
    2. Marcelo Ramos Martins & Adriana Miralles Schleder & Enrique López Droguett, 2014. "A Methodology for Risk Analysis Based on Hybrid Bayesian Networks: Application to the Regasification System of Liquefied Natural Gas Onboard a Floating Storage and Regasification Unit," Risk Analysis, John Wiley & Sons, vol. 34(12), pages 2098-2120, December.
    3. Rui Liu & Yun Chen & Jianping Wu & Lei Gao & Damian Barrett & Tingbao Xu & Xiaojuan Li & Linyi Li & Chang Huang & Jia Yu, 2017. "Integrating Entropy‐Based Naïve Bayes and GIS for Spatial Evaluation of Flood Hazard," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 756-773, April.
    4. Vicki Bier, 2020. "The Role of Decision Analysis in Risk Analysis: A Retrospective," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2207-2217, November.
    5. Bruce Tonn & Dorian Stiefel, 2013. "Evaluating Methods for Estimating Existential Risks," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1772-1787, October.
    6. Ali Jamshidi & Shahrzad Faghih‐Roohi & Siamak Hajizadeh & Alfredo Núñez & Robert Babuska & Rolf Dollevoet & Zili Li & Bart De Schutter, 2017. "A Big Data Analysis Approach for Rail Failure Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1495-1507, August.
    7. Ruiling Sun & Ge Gao & Zaiwu Gong & Jie Wu, 2020. "A review of risk analysis methods for natural disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 571-593, January.
    8. Xunfeng Yang & Lianfa Li & Jinfeng Wang & Jixia Huang & Shijun Lu, 2015. "Cardiovascular Mortality Associated with Low and High Temperatures: Determinants of Inter-Region Vulnerability in China," IJERPH, MDPI, vol. 12(6), pages 1-16, May.
    9. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:21:y:2018:i:4:p:285-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.