IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v20y2017i6p483-496.html
   My bibliography  Save this article

Assessing causal claims about complex engineered systems with quantitative data: internal, external, and construct validity

Author

Listed:
  • David A. Broniatowski
  • Conrad Tucker

Abstract

Engineers seek to design systems that will produce an intended change in the state of the world. How are we to know if a system will behave as intended? This article addresses ways that this question can be answered. Specifically, we focus on three types of research validity: (1) internal validity, or whether an observed association between two variables can be attributed to a causal link between them; (2) external validity, or whether a causal link generalizes across contexts; and (3) construct validity, or whether a specific set of metrics corresponds to what they are intended to measure. In each case, we discuss techniques that may be used to establish the corresponding type of validity: namely, quasi‐experimental design, replication, and establishment of convergent‐discriminant validity and reliability. These techniques typically require access to data, which has historically been limited for research on complex engineered systems. This is likely to change in the era of “big data.” Thus, we discuss the continued utility of these validity concepts in the face of advances in machine learning and big data as they pertain to complex engineered sociotechnical systems. Next, we discuss relationships between these validity concepts and other prominent approaches to evaluating research in the field. Finally, we propose a set of criteria by which one may evaluate research utilizing quantitative observation to test causal theory in the field of complex engineered systems.

Suggested Citation

  • David A. Broniatowski & Conrad Tucker, 2017. "Assessing causal claims about complex engineered systems with quantitative data: internal, external, and construct validity," Systems Engineering, John Wiley & Sons, vol. 20(6), pages 483-496, November.
  • Handle: RePEc:wly:syseng:v:20:y:2017:i:6:p:483-496
    DOI: 10.1002/sys.21414
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21414
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21414?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. John H. Miller & Scott E. Page, 2007. "Social Science in Between, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    3. John D. Sterman, 1989. "Modeling Managerial Behavior: Misperceptions of Feedback in a Dynamic Decision Making Experiment," Management Science, INFORMS, vol. 35(3), pages 321-339, March.
    4. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    5. John H. Miller & Scott E. Page, 2007. "Complexity in Social Worlds, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    6. David A Broniatowski & Michael J Paul & Mark Dredze, 2013. "National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    7. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hund, Lauren & Schroeder, Benjamin, 2020. "A causal perspective on reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xue-yan & Li, Xue-mei & Li, Xue-wei & Qiu, He-ting, 2017. "Multi-agent fare optimization model of two modes problem and its analysis based on edge of chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 405-419.
    2. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    3. Bednar, Jenna & Jones-Rooy, Andrea & Page, Scott E., 2015. "Choosing a future based on the past: Institutions, behavior, and path dependence," European Journal of Political Economy, Elsevier, vol. 40(PB), pages 312-332.
    4. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    5. Citera, Emanuele & Sau, Lino, 2019. "Complexity, Conventions and Instability: the role of monetary policy," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201924, University of Turin.
    6. Shoji, Isao & Kanehiro, Sumei, 2016. "Disposition effect as a behavioral trading activity elicited by investors' different risk preferences," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 104-112.
    7. Jonathan Meng & Feng Fu, 2020. "Understanding Gambling Behavior and Risk Attitudes Using Cryptocurrency-based Casino Blockchain Data," Papers 2008.05653, arXiv.org, revised Aug 2020.
    8. Daniel Fonseca Costa & Francisval Carvalho & Bruno César Moreira & José Willer Prado, 2017. "Bibliometric analysis on the association between behavioral finance and decision making with cognitive biases such as overconfidence, anchoring effect and confirmation bias," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1775-1799, June.
    9. Boone, Jan & Sadrieh, Abdolkarim & van Ours, Jan C., 2009. "Experiments on unemployment benefit sanctions and job search behavior," European Economic Review, Elsevier, vol. 53(8), pages 937-951, November.
    10. Castro, Luciano de & Galvao, Antonio F. & Kim, Jeong Yeol & Montes-Rojas, Gabriel & Olmo, Jose, 2022. "Experiments on portfolio selection: A comparison between quantile preferences and expected utility decision models," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 97(C).
    11. Jos'e Cl'audio do Nascimento, 2019. "Behavioral Biases and Nonadditive Dynamics in Risk Taking: An Experimental Investigation," Papers 1908.01709, arXiv.org, revised Apr 2023.
    12. Francesco GUALA, 2017. "Preferences: Neither Behavioural nor Mental," Departmental Working Papers 2017-05, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    13. Bin Zou, 2017. "Optimal Investment In Hedge Funds Under Loss Aversion," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-32, May.
    14. Itzhak Gilboa & Andrew Postlewaite & Larry Samuelson & David Schmeidler, 2019. "What are axiomatizations good for?," Theory and Decision, Springer, vol. 86(3), pages 339-359, May.
    15. Wiafe, Osei K. & Basu, Anup K. & Chen, En Te, 2020. "Portfolio choice after retirement: Should self-annuitisation strategies hold more equities?," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 241-255.
    16. Nicholas Barberis, 2012. "A Model of Casino Gambling," Management Science, INFORMS, vol. 58(1), pages 35-51, January.
    17. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Goytom Abraha Kahsay & Daniel Osberghaus, 2018. "Storm Damage and Risk Preferences: Panel Evidence from Germany," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 301-318, September.
    19. Carolin Bock & Maximilian Schmidt, 2015. "Should I stay, or should I go? – How fund dynamics influence venture capital exit decisions," Review of Financial Economics, John Wiley & Sons, vol. 27(1), pages 68-82, November.
    20. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:20:y:2017:i:6:p:483-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.