IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v18y2015i6p549-567.html
   My bibliography  Save this article

Disaggregated Space System Concept Optimization: Model‐Based Conceptual Design Methods

Author

Listed:
  • Robert E. Thompson
  • John M. Colombi
  • Jonathan Black
  • Bradley J. Ayres

Abstract

Optimal design techniques have proven to be an effective systems engineering tool. Using systems architecture as the foundation, this paper explores the use of mixed variable optimization models for synthesizing and evaluating disaggregated space system concepts. Model‐based conceptual design (MBCD) techniques are used to identify and assess system architectures based upon estimated system cost and performance trades. The Disaggregated Integral System Concept Optimization (DISCO) methodology is introduced, and then applied to a space‐based, fire detection mission. Several results are obtained that indicate potential cost effectiveness gains from the concept design optimization of a fire detection mission. The general methodology has broad applicability for MBCD of systems, but is particularly useful for dynamic, nonlinear disaggregated space systems.

Suggested Citation

  • Robert E. Thompson & John M. Colombi & Jonathan Black & Bradley J. Ayres, 2015. "Disaggregated Space System Concept Optimization: Model‐Based Conceptual Design Methods," Systems Engineering, John Wiley & Sons, vol. 18(6), pages 549-567, November.
  • Handle: RePEc:wly:syseng:v:18:y:2015:i:6:p:549-567
    DOI: 10.1002/sys.21310
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21310
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:cup:cbooks:9780521438834 is not listed on IDEAS
    2. Alexander H. Levis & Lee W. Wagenhals, 2000. "C4ISR architectures: I. Developing a process for C4ISR architecture design," Systems Engineering, John Wiley & Sons, vol. 3(4), pages 225-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee W. Wagenhals & Sajjad Haider & Alexander H. Levis, 2003. "Synthesizing executable models of object oriented architectures," Systems Engineering, John Wiley & Sons, vol. 6(4), pages 266-300.
    2. Madwaraj Rao & Sreeram Ramakrishnan & Cihan Dagli, 2008. "Modeling and simulation of net centric system of systems using systems modeling language and colored Petri‐nets: A demonstration using the global earth observation system of systems," Systems Engineering, John Wiley & Sons, vol. 11(3), pages 203-220, September.
    3. Lee W. Wagenhals & Insub Shin & Daesik Kim & Alexander H. Levis, 2000. "C4ISR architectures: II. A structured analysis approach for architecture design," Systems Engineering, John Wiley & Sons, vol. 3(4), pages 248-287.
    4. Miri Sitton & Yoram Reich, 2015. "Enterprise Systems Engineering for Better Operational Interoperability," Systems Engineering, John Wiley & Sons, vol. 18(6), pages 625-638, November.
    5. Ashraf M. Abusharekh & Lawrence E. Gloss & Alexander H. Levis, 2011. "Evaluation of Service Oriented Architecture‐based federated architectures," Systems Engineering, John Wiley & Sons, vol. 14(1), pages 56-72, March.
    6. Timothy J. Eveleigh & Thomas A. Mazzuchi & Shahram Sarkani, 2007. "Spatially‐aware systems engineering design modeling applied to natural hazard vulnerability assessment," Systems Engineering, John Wiley & Sons, vol. 10(3), pages 187-202, September.
    7. Insub Shin & Alexander H. Levis, 2003. "Performance prediction of networked information systems via Petri nets and queuing nets," Systems Engineering, John Wiley & Sons, vol. 6(1), pages 1-18.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:18:y:2015:i:6:p:549-567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.