IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v14y2011i3p223-238.html
   My bibliography  Save this article

Insight, innovation, and the big picture in system design

Author

Listed:
  • G. Maarten Bonnema

Abstract

Systems architecting is the design phase where the top‐level functions and performance of a system are distributed over the system's parts, its environment, and its users. Up till now, system architects had to largely learn the required skills in practice. Some courses exist that teach the right attitude and mindset for the system architect. However, methods for architecting that can be implemented in a computer tool are virtually nonexistent. Earlier we presented a method, FunKey Architecting, which may aid the system architect in the early phase of design. In combination with TRIZ a design tool is created, which can be used to simplify and improve system architectures. It aims at supporting both the system designer and the specialist designers working on systems. The main topic of the paper is the application of the method in two industrial cases. The one case is an environment where new technology has to be developed and state of the art physics have to meet machine construction principles. The other case is in an industry where well‐proven technology is used in such a way that high‐performance machines are created. A third application of the FunKey tool is performed by students at the University of Twente. The context of each case and the results will be described. © 2010 Wiley Periodicals, Inc. Syst Eng 14

Suggested Citation

  • G. Maarten Bonnema, 2011. "Insight, innovation, and the big picture in system design," Systems Engineering, John Wiley & Sons, vol. 14(3), pages 223-238, September.
  • Handle: RePEc:wly:syseng:v:14:y:2011:i:3:p:223-238
    DOI: 10.1002/sys.20174
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.20174
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.20174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tamir Bustnay & Joseph Z. Ben‐Asher, 2005. "How many systems are there?—using the N2 method for systems partitioning," Systems Engineering, John Wiley & Sons, vol. 8(2), pages 109-118.
    2. Jorge De Andrés Sánchez & Antonio Terceño Gómez, 2003. "Applications of Fuzzy Regression in Actuarial Analysis," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 665-699, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy D. Blackburn & Thomas A. Mazzuchi & Shahram Sarkani, 2012. "Using a TRIZ framework for systems engineering trade studies," Systems Engineering, John Wiley & Sons, vol. 15(3), pages 355-367, September.
    2. Christopher W. Karvetski & James H. Lambert, 2012. "Evaluating deep uncertainties in strategic priority‐setting with an application to facility energy investments," Systems Engineering, John Wiley & Sons, vol. 15(4), pages 483-493, December.
    3. Robin de Graaf & Hans Voordijk & Len van den Heuvel, 2016. "Implementing Systems Engineering in Civil Engineering Consulting Firm: An Evaluation," Systems Engineering, John Wiley & Sons, vol. 19(1), pages 44-58, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    2. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    3. Morillas, Antonio & Díaz, Bárbara, 2007. "Qualitative Answering Surveys And Soft Computing," Fuzzy Economic Review, International Association for Fuzzy-set Management and Economy (SIGEF), vol. 0(1), pages 3-19, May.
    4. Koissi, Marie-Claire & Shapiro, Arnold F., 2006. "Fuzzy formulation of the Lee-Carter model for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 39(3), pages 287-309, December.
    5. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Shapiro, A.F. & Terraza, M., 2014. "CAPM with fuzzy returns and hypothesis testing," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 40-57.
    6. Heberle, Jochen & Thomas, Anne, 2014. "Combining chain-ladder claims reserving with fuzzy numbers," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 96-104.
    7. Smimou, Kamal, 2006. "Estimation of Canadian commodity market risk premiums under price limits: Two-phase fuzzy approach," Omega, Elsevier, vol. 34(5), pages 477-491, October.
    8. Brychykova, A., 2019. "Capital Asset Pricing Model Using Fuzzy Data and Application for the Russian Stock Market," Journal of the New Economic Association, New Economic Association, vol. 43(3), pages 58-77.
    9. Berry-Stölzle, Thomas R. & Koissi, Marie-Claire & Shapiro, Arnold F., 2010. "Detecting fuzzy relationships in regression models: The case of insurer solvency surveillance in Germany," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 554-567, June.
    10. Apaydin, Aysen & Baser, Furkan, 2010. "Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 113-122, October.
    11. Jason E. Bartolomei & Daniel E. Hastings & Richard de Neufville & Donna H. Rhodes, 2012. "Engineering Systems Multiple‐Domain Matrix: An organizing framework for modeling large‐scale complex systems," Systems Engineering, John Wiley & Sons, vol. 15(1), pages 41-61, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:14:y:2011:i:3:p:223-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.