Author
Listed:
- Aakash Singh
- Anurag Kanaujia
- Vivek Kumar Singh
- Ricardo Vinuesa
Abstract
The development of artificial intelligence (AI) as a field has impacted almost all aspects of human life. More recently it has found a role in addressing developmental challenges, specifically the Sustainable Development Goals (SDGs). However, there are not enough systematic studies on analysis of the role of AI research towards the SDGs. Therefore, this article attempts to bridge this gap by identifying the major bibliometric trends and concept‐evolution trajectories in the area of AI applications for sustainable‐development goals. The research publication data for the last 20 years in the areas of artificial intelligence, machine learning, deep learning, and so forth, is obtained and computationally analysed using a framework comprising bibliometrics, path analysis and content analysis. The findings show an incremental trend in overall publications on the application of AI for SDGs across the different regions of the world. SDGs 3 (good health & well‐being) and 7 (affordable and clean energy) are found as the areas with the most applications of AI. In SDG3, the literature reflects application of AI techniques such as deep learning for precision and personalised medicine while in SDG7, a number of studies have employed AI techniques for the integration of systems for efficient generation of solar power and improving the energy efficiency of a building. Furthermore, SDG 4 (quality education), SDG 13 (climate action), SDG 11 (sustainable cities and communities) and SDG 16 (peace, justice and strong institutions) are the other SDGs where AI approaches and techniques are applied. The analytical results present a detailed insight of application of AI for achieving the SDGs.
Suggested Citation
Aakash Singh & Anurag Kanaujia & Vivek Kumar Singh & Ricardo Vinuesa, 2024.
"Artificial intelligence for Sustainable Development Goals: Bibliometric patterns and concept evolution trajectories,"
Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 724-754, February.
Handle:
RePEc:wly:sustdv:v:32:y:2024:i:1:p:724-754
DOI: 10.1002/sd.2706
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:32:y:2024:i:1:p:724-754. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.