IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v6y1986i4p477-488.html
   My bibliography  Save this article

Comparative Fire Risk Study of PCB Transformers

Author

Listed:
  • Raymond F. Boykin
  • Mardyros Kazarians
  • Raymond A. Freeman

Abstract

A risk assessment comparing the acute effects of mineral oil and PCB‐askarel dielectric fluids in two transformer sites was performed. The first site has the installation characteristics for a PCB‐askarel‐filled transformer with sprinkler fire protection. A risk comparison is made between two types of transformers (PCB‐askarel‐filled and mineral oil‐filled) for this site. The second site (a vault) has the installation characteristics for a mineral oil‐filled transformer, and a risk comparison is made in a fashion similar to the first site. Risk is expressed in terms of frequencies of one or more acute injuries or fatalities per transformer year.

Suggested Citation

  • Raymond F. Boykin & Mardyros Kazarians & Raymond A. Freeman, 1986. "Comparative Fire Risk Study of PCB Transformers," Risk Analysis, John Wiley & Sons, vol. 6(4), pages 477-488, December.
  • Handle: RePEc:wly:riskan:v:6:y:1986:i:4:p:477-488
    DOI: 10.1111/j.1539-6924.1986.tb00959.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.1986.tb00959.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.1986.tb00959.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stanley Kaplan, 1981. "On The Method of Discrete Probability Distributions in Risk and Reliability Calculations–Application to Seismic Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 1(3), pages 189-196, September.
    2. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    3. Peter Kolesar & Warren Walker & Jack Hausner, 1975. "Determining the Relation between Fire Engine Travel Times and Travel Distances in New York City," Operations Research, INFORMS, vol. 23(4), pages 614-627, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Wei & Lin, Wei-Cheng & You, Fei & Shu, Chi-Min & Qin, Sheng-Hui, 2019. "Prevention of green energy loss: Estimation of fire hazard potential in wind turbines," Renewable Energy, Elsevier, vol. 140(C), pages 62-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edouard Kujawski & Gregory A. Miller, 2007. "Quantitative risk‐based analysis for military counterterrorism systems," Systems Engineering, John Wiley & Sons, vol. 10(4), pages 273-289, December.
    2. Carolyn D. Heising & Virgilio Lopes de Oliveira, 1995. "A Unified Approach for Calculating Core Melt Frequency Caused by Internal and External Initiating Events," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 41-47, February.
    3. Gundula Glowka & Andreas Kallmünzer & Anita Zehrer, 2021. "Enterprise risk management in small and medium family enterprises: the role of family involvement and CEO tenure," International Entrepreneurship and Management Journal, Springer, vol. 17(3), pages 1213-1231, September.
    4. Benischke, Mirko H. & Guldiken, Orhun & Doh, Jonathan P. & Martin, Geoffrey & Zhang, Yanze, 2022. "Towards a behavioral theory of MNC response to political risk and uncertainty: The role of CEO wealth at risk," Journal of World Business, Elsevier, vol. 57(1).
    5. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    6. Marcos Singer & Patricio Donoso & Natalia Jadue, 2004. "Evaluacion De Las Oportunidades De Mejoramiento De La Logistica Directa De Emergencia," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 7(2), pages 179-209.
    7. K. Karthikeyan & S. Bharath & K. Ranjith Kumar, 2012. "An Empirical Study on Investors’ Perception towards Mutual Fund Products through Banks with Reference to Tiruchirapalli City, Tamil Nadu," Vision, , vol. 16(2), pages 101-108, June.
    8. Nicola Paltrinieri & Nicolas Dechy & Ernesto Salzano & Mike Wardman & Valerio Cozzani, 2012. "Lessons Learned from Toulouse and Buncefield Disasters: From Risk Analysis Failures to the Identification of Atypical Scenarios Through a Better Knowledge Management," Risk Analysis, John Wiley & Sons, vol. 32(8), pages 1404-1419, August.
    9. Louis Anthony (Tony) Cox, Jr., 2012. "Community Resilience and Decision Theory Challenges for Catastrophic Events," Risk Analysis, John Wiley & Sons, vol. 32(11), pages 1919-1934, November.
    10. Chen, Fuzhong & Hsu, Chien-Lung & Lin, Arthur J. & Li, Haifeng, 2020. "Holding risky financial assets and subjective wellbeing: Empirical evidence from China," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. Niël Almero Krüger & Natanya Meyer, 2021. "The Development of a Small and Medium-Sized Business Risk Management Intervention Tool," JRFM, MDPI, vol. 14(7), pages 1-14, July.
    12. James H. Lambert & Rachel K. Jennings & Nilesh N. Joshi, 2006. "Integration of risk identification with business process models," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 187-198, September.
    13. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    15. J. C. Helton & F. J. Davis, 2002. "Illustration of Sampling‐Based Methods for Uncertainty and Sensitivity Analysis," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 591-622, June.
    16. Michael Greenberg & Paul Lioy & Birnur Ozbas & Nancy Mantell & Sastry Isukapalli & Michael Lahr & Tayfur Altiok & Joseph Bober & Clifton Lacy & Karen Lowrie & Henry Mayer & Jennifer Rovito, 2013. "Passenger Rail Security, Planning, and Resilience: Application of Network, Plume, and Economic Simulation Models as Decision Support Tools," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 1969-1986, November.
    17. Jack Brimberg & Robert F. Love, 1991. "Estimating travel distances by the weighted lp norm," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 241-259, April.
    18. Felipe Aguirre & Mohamed Sallak & Walter Schön & Fabien Belmonte, 2013. "Application of evidential networks in quantitative analysis of railway accidents," Journal of Risk and Reliability, , vol. 227(4), pages 368-384, August.
    19. Naomi Aoki, 2018. "Who Would Be Willing to Accept Disaster Debris in Their Backyard? Investigating the Determinants of Public Attitudes in Post‐Fukushima Japan," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 535-547, March.
    20. Yacov Y. Haimes, 2012. "Systems‐Based Guiding Principles for Risk Modeling, Planning, Assessment, Management, and Communication," Risk Analysis, John Wiley & Sons, vol. 32(9), pages 1451-1467, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:6:y:1986:i:4:p:477-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.