IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v40y2020i3p624-637.html
   My bibliography  Save this article

Persistent Risk‐Related Worry as a Function of Recalled Exposure to the Deepwater Horizon Oil Spill and Prior Trauma

Author

Listed:
  • Andrew M Parker
  • Melissa L. Finucane
  • Lynsay Ayer
  • Rajeev Ramchand
  • Vanessa Parks
  • Noreen Clancy

Abstract

Large oil spills are disasters associated with psychological effects for exposed communities. The amount of worry that individuals experience after a disaster may be influenced by many factors, such as the type and extent of exposure to disaster impacts, prior trauma, and sociodemographic characteristics. This study examined the nature and predictors of worry about ongoing impacts of the 2010 Deepwater Horizon (DH) oil spill reported by Gulf of Mexico coastal residents. A random sample of 2,520 adult residents of Gulf of Mexico coastal counties were administered a telephone survey in 2016, including items about persistent worry and exposure to DH impacts, prior trauma, residence at the time of the spill, and sociodemographic characteristics. Respondents varied in the amount of worry they reported about ongoing health, social, and economic impacts. Controlling for sociodemographic characteristics, higher exposure to the DH oil spill was related to higher levels of worry about ongoing impacts, with past traumatic events related specifically to worry about health impacts. Unexpectedly, those who moved into the region after the spill showed similar levels of worry to residents exposed to the spill, and higher levels than residents who did not recall being exposed to the DH oil spill. This study highlights the impact of the DH oil spill on coastal residents many years after the DH disaster. The findings underscore the need to examine multiple pathways by which individuals experience disasters and for risk researchers to close knowledge gaps about long‐term impacts of oil spills within a multi‐dimensional framework.

Suggested Citation

  • Andrew M Parker & Melissa L. Finucane & Lynsay Ayer & Rajeev Ramchand & Vanessa Parks & Noreen Clancy, 2020. "Persistent Risk‐Related Worry as a Function of Recalled Exposure to the Deepwater Horizon Oil Spill and Prior Trauma," Risk Analysis, John Wiley & Sons, vol. 40(3), pages 624-637, March.
  • Handle: RePEc:wly:riskan:v:40:y:2020:i:3:p:624-637
    DOI: 10.1111/risa.13437
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13437
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Paul Slovic & Melissa L. Finucane & Ellen Peters & Donald G. MacGregor, 2004. "Risk as Analysis and Risk as Feelings: Some Thoughts about Affect, Reason, Risk, and Rationality," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 311-322, April.
    3. Michael Siegrist, 2013. "The Necessity for Longitudinal Studies in Risk Perception Research," Risk Analysis, John Wiley & Sons, vol. 33(1), pages 50-51, January.
    4. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Slack & Vanessa Parks & Lynsay Ayer & Andrew M. Parker & Melissa L. Finucane & Rajeev Ramchand, 2020. "Natech or natural? An analysis of hazard perceptions, institutional trust, and future storm worry following Hurricane Harvey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1207-1224, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolás C. Bronfman & Pamela C. Cisternas & Paula B. Repetto & Javiera V. Castañeda & Eliana Guic, 2020. "Understanding the Relationship Between Direct Experience and Risk Perception of Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 2057-2070, October.
    2. Rianne van Duinen & Tatiana Filatova & Peter Geurts & Anne van der Veen, 2015. "Empirical Analysis of Farmers' Drought Risk Perception: Objective Factors, Personal Circumstances, and Social Influence," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 741-755, April.
    3. Ewa Lechowska, 2022. "Approaches in research on flood risk perception and their importance in flood risk management: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2343-2378, April.
    4. Ewa Lechowska, 2018. "What determines flood risk perception? A review of factors of flood risk perception and relations between its basic elements," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1341-1366, December.
    5. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    6. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    7. Meryl Jagarnath & Tirusha Thambiran & Michael Gebreslasie, 2020. "Heat stress risk and vulnerability under climate change in Durban metropolitan, South Africa—identifying urban planning priorities for adaptation," Climatic Change, Springer, vol. 163(2), pages 807-829, November.
    8. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    9. Ashley C. Freeman & Walker S. Ashley, 2017. "Changes in the US hurricane disaster landscape: the relationship between risk and exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 659-682, September.
    10. Raman Kachurka & Michał W. Krawczyk & Joanna Rachubik, 2021. "Persuasive messages will not raise COVID-19 vaccine acceptance. Evidence from a nation-wide online experiment," Working Papers 2021-07, Faculty of Economic Sciences, University of Warsaw.
    11. Yongdeng Lei & Jing’ai Wang & Yaojie Yue & Hongjian Zhou & Weixia Yin, 2014. "Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 609-627, January.
    12. Pujun Liang & Wei Xu & Yunjia Ma & Xiujuan Zhao & Lianjie Qin, 2017. "Increase of Elderly Population in the Rainstorm Hazard Areas of China," IJERPH, MDPI, vol. 14(9), pages 1-17, August.
    13. Kamaldeen Mohammed & Evans Batung & Moses Kansanga & Hanson Nyantakyi-Frimpong & Isaac Luginaah, 2021. "Livelihood diversification strategies and resilience to climate change in semi-arid northern Ghana," Climatic Change, Springer, vol. 164(3), pages 1-23, February.
    14. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    15. James K. Hammitt, 2020. "Valuing mortality risk in the time of COVID-19," Journal of Risk and Uncertainty, Springer, vol. 61(2), pages 129-154, October.
    16. Huaiyuan Zhai & Mengjie Li & Shengyue Hao & Mingli Chen & Lingchen Kong, 2021. "How Does Metro Maintenance Staff’s Risk Perception Influence Safety Citizenship Behavior—The Mediating Role of Safety Attitude," IJERPH, MDPI, vol. 18(10), pages 1-20, May.
    17. Scorgie, Fiona & Khoza, Nomhle & Delany-Moretlwe, Sinead & Velloza, Jennifer & Mangxilana, Nomvuyo & Atujuna, Millicent & Chitukuta, Miria & Matambanadzo, Kudzai V. & Hosek, Sybil & Makhale, Lerato & , 2021. "Narrative sexual histories and perceptions of HIV risk among young women taking PrEP in southern Africa: Findings from a novel participatory method," Social Science & Medicine, Elsevier, vol. 270(C).
    18. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    19. Kang, Min Jung & Park, Heejun, 2011. "Impact of experience on government policy toward acceptance of hydrogen fuel cell vehicles in Korea," Energy Policy, Elsevier, vol. 39(6), pages 3465-3475, June.
    20. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:40:y:2020:i:3:p:624-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.